OJG  Vol.2 No.4 , October 2012
Wadi Fatima Thin-Skinned Foreland FAT Belt: A Post Amalgamation Marine Basin in the Arabian Shield
Abstract: Wadi Fatima fold-thrust (FAT) belt is a distinctive foreland FAT belt in the Arabian-Nubian Shield (ANS) involving unmetamorphosed to slightly metamorphosed sedimentary sequence of Fatima Group, deposited over a metamorphic/igneous basement, comprising ortho-amphibolites, orthoand para-schists (with chaotic unmappable blocks of marbles, pyroxenites and metagabbros), older granite (773 ± 16 Ma) and younger granite. The basement exhibits structural fabrics, such as attenuated tight isoclinal folds, sheared-out hinges, NE-SW penetrative foliation and subhorizontal stretched and mineral lineations, related to an oldest prominent dextral shearing phase affected the main Wadi Fatima during the Neoproterozoic. In Wadi Fatima FAT belt, the style of deformation encompasses flexural-slip folding forming mesoscopicand map-scales NE to ENE plunging overturned antiforms and synforms, and a thrust duplex system bounded by floor thrust and sole thrust (basal detachment) dipping gently towards the hinterland (SE to SSE direction) and rises stratigraphically upwards towards the foreland. Such style is affiliated to thin-skinned deformation. Several lines of evidence, such as geometry of interacting outcropand map-scale folds and thrusts, patterns of thrust displacement variations and indications for hinge migration during fold growth, strongly suggest that folding and thrusting in Wadi Fatima FAT belt are geometrically and kinematically linked and that thrusting initiated as a consequence of folding (fold-first kinematics). Thrusts frequently show flat-ramp-flat geometry, and every so often give an impression that they are formed during two main sub-stages; an older sub-stage during which bedding sub-parallel thrusts were formed, and a younger sub-stage which generated younger ramps oblique to bedding. Thrust ramps with SE to SSE dipping regularly show sequential decrease in dip or inclination (due to piggy-back imbrication) into their transport direction which is proposed to be towards NW to NNW. Evidence indicating this transport direction of Wadi Fatima FAT belt embrace NW to NNW oriented stretching lineations recorded along thrust planes, NW to NNW folding vergence, and diminishing of the intensity of deformation and thrust stacking and imbrication from SE to NW; i.e. from hinterland to foreland. The tectonic transport vector is congruent with the mean orientation of slickenline striae formed by layer-parallel slipping along folded bedding planes. The mean orientation of slickenline lineations, after their host beds were rotated to horizontal about their strikes, is found to be N25°W - S25°E. Two tectonic models are proposed to unravel the structural history of the study area and to illustrate the tectonic evolution of Wadi Fatima FAT belt which represents one of interesting foreland FAT belts recorded worldwide. In the first model, the area was evolved from dextral shearing during the early convergence and amalgamation between East and West Gondwana, to emplacement of the older granite during a period of crustal cessation and relaxation, NNW SSE extension and extrusion of dyke swarms, emplacement of younger granite, deposition of Fatima Group over an ancient peneplain, layer parallel shortening, folding and fold tightening and overturning, thrusting, NE-SW (to NNE-SSW) shortening, and eventually NE tilting accompanied with Red Sea rifting (?). The second model suggests the presence of basement ramps (pre-existing normal faults), with NW to NNW dipping, have a strong effect on overlying Fatima Group which was evolved throughout gravitational, soft-sediment slumping and deformation.
Cite this paper: Hamimi, Z. , Matsah, M. , El-Shafei, M. , El-Fakharani, A. , Shujoon, A. and Al-Gabali, M. (2012) Wadi Fatima Thin-Skinned Foreland FAT Belt: A Post Amalgamation Marine Basin in the Arabian Shield. Open Journal of Geology, 2, 271-293. doi: 10.4236/ojg.2012.24027.

[1]   R. J. Stern, “Arc Assembly and Continental Collision in the Neoproterozoic East African Orogen: Implications for the Consolidation of Gondwanaland,” Annual Review of Earth and Planetary Sciences, Vol. 22, 1994, pp.319-351. doi:10.1146/annurev.ea.22.050194.001535

[2]   R. J. Stern, “Crustal Evolution in the East African Orogen: A Neodymium Isotopic Perspective,” Journal of African Earth Sciences. Vol. 34, No. 3-4, 2002, pp.109-117. doi:10.1016/S0899-5362(02)00012-X

[3]   T. M. Kusky, M. Abdelsalam, R. Stern and R. Tucker, “Preface to Special Issue on the East African and Related Orogens and the Assembly of Gondwana,” Precambrian Research. Vol. 123, No. *, 2003, pp. 81-85. doi:10.1016/S0301-9268(03)00062-7

[4]   P. R. Johnson and B. Woldehaimanot, “Development of the Arabian-Nubian Shield: Perspectives on Accretion and Deformation in the Northern East African Orogen and the Assembly of Gondwana,” In: M. Yoshida, B. F. Windley and S. Dasgupta, Eds., Proterozoic East Gondwana: Supercontinent Assembly and Breakup. Geological Society of London, London, 2003, pp. 290-325.

[5]   P. R. Johnson, A. Andresen, A. S. Collins, A. R. Fowler, H. Fritz, W. Ghebreab, T. M. Kusky and R. J. Stern, “Late Cryogenian-Ediacaran History of the Arabian-Nubian Shield: A Review of Depositional, Plutonic, Structural and Tectonic Events in the Closing Stages of the Northern East African Orogen,” Journal of African Earth Sciences, Vol. 61, No. 3, 2011, pp. 167-232. doi:10.1016/j.jafrearsci.2011.07.003

[6]   F. A. R. Zakir and A. R. Moustafa, “Structural Setting of Jabal Abu Ghurrah Area, Wadi Fatima, West Central Saudi Arabia,” Journal of King Abdulaziz University: Earth Sciences, Vol. 5, No. *, 1992, pp. 177-201.

[7]   A. M. S. Al-Shanti, “Oolitic Iron Ore deposits in Wadi Fatima between Jeddah and Mecca, Saudi Arabia,” Saudi Arabian Ministry of Petroleum and Mineral Resources, Directorate General of Mineral Resources, Vol. 2, No. 2, 1966, 51 p.

[8]   K. Nebert, A. A. Alshaibi, M. Awlia, I. Bounny, Z. A., Nawab, O. H. Sharief, O. A. Sherbini and A. H. Yeslam, “Geology of the Area North of Wadi Fatima, Kingdom of Saudi Arabia,” Center for Applied Geology, Jeddah, Bulletin 1, 1974, Vol. *, No. 1, pp. 30-31.

[9]   G. F. Brown and R. O. Jackson, “The Arabian Shield,” The 21st International Geological Congress, Copenhagen Vol. 9, No. *, 1960, pp. 69-77.

[10]   R. Karpoff, “Observations Preliminaires Sur La Socle Ancien De I’Arabie: C. R. Somm,” Geological Society of France, Vol. *, No. *, 1955, pp. 105-106.

[11]   H. J. Duyverman, N. B. Harria and C. J. Hawkes-worth, “Crustal Accretion in the Pan-African: Nd and Sr Isotope Evidence from the Arabian Shield” Earth Planetary Science Letter. Vol. 59, No. 2, 1982, pp.315-326. doi:10.1016/0012-821X(82)90134-0

[12]   D. P. F. Darbyshire, N. J. Jackson, C. R. Ramsay and M. J. Roobol, “Rb-Sr Isotope Study of Latest Proterozoic Volcano-Sedimentary Belts in the Central Arabian Shield,” Journal of Geological Society of London Vol. 140, No. 2, 1983, pp. 203-213. doi:10.1144/gsjgs.140.2.0203

[13]   T. A. Moore and M. H. Al-Rehaili, “Explanatory Notes to the Geologic Map of the Makkah Quadrangle,” Sheet 21- D, Geoscience Map GM-107C, Kingdom of Saudi Arabia, Ministry of Petroleum and Mineral Resources, Directorate General of Mineral Resources, 1989, 62 p.

[14]   A. M. S. Al-Shanti, “Geology of the Arabian Shield of Saudi Arabia,” Scientific Publishing Center, King Abdulaziz University, 2009, p.190.

[15]   D. L. Grainger, “The Late Proterozoic Fatima Groupnear Jeddah,” Geo Arabia, Vol. 6, No. *, 2001, pp.103-114.

[16]   Amlas and Z. Hamimi, “Kinematics and Progressive Deformational History of Al-Jamoom Pan-African Belt, Western Arabian Shield, Saudi Arabia,” Annals of Geological Survey of Egypt, Vol. *, No. *, 2005, pp.111-131.

[17]   W. R. Greenwood, D. G. Hadley, R. E. Anderson, R. J., Fleck and D. L. Schmidt, “Late Proterozoic Cratonization in Southwestern Saudi Arabia,” Philosophical Transactions of The Royal Society of London A, Vol. 280, No. 1298, 1976, pp. 517-527. doi:10.1098/rsta.1976.0010

[18]   J. Delfour, “Geology and Mineralization of the Northern Arabian Shield,” DMMR Open File Report, Vol. *, No. *, 1982, pp. 2-30.

[19]   S. Khomsi, A. Smadi, M. Matsah and M. El-Shafei, “Structural Style of the Wadi Fatima Area in Eastern Jeddah on the Border of the Arabian Shield: Insightful Thrust Mechanisms,” Arabian Conference of Geosciences, *, 2011, 30 p.

[20]   G. F. Brown, R. O. Jackson, R. G. Bogue and W.H. MacLean, “Geologic map of the southern Hijaz quadrangle KSA,” US Geological Survey Mic. Geol. Inv., 1962, Map I-210A.

[21]   R. Karpoff, “Sur l’ Existence Du Maestrichtien Au Nord De Djeddah (Arabie Se’oudite,”: Compt. Rend. se'ance Acad. Sciences, Vol. 245, 1957, pp. 1322-1324.

[22]   M. C. A. Powell, “A Morphological Classification of Rock Cleavage,” Tectonophysics, Vol. 58, No. 1-2, 1979, pp. 21-34. doi:10.1016/0040-1951(79)90320-2

[23]   G. J. Borradaile, M. B. Bayly and C. M. A. Powell, “Atlas of Deformational and Metamorphic Rock Fabrics,” 1982, Springer-Verlag, Berlin Heidelberg New York doi:10.1007/978-3-642-68432-6

[24]   Z. Hamimi, E. K. El-Sawy, A. S. El-Fakharani, A. Shujoon, M. Matsah and M. El-Shafei, “Structural Evolution of the NE-Trending 620-540 Ma Ad-Damm Shear Zone, Arabian Shield, Saudi Arabia,” European Geosciences Union, Munich, 2012.

[25]   S. El-Gaby, F. K. List and R. Tehrani, “Geology, Evolution and Metallogenesis of the Pan-African Belt in Egypt,” In: S. El-Gaby and R. O. Greiling, Eds., The Pan-African Belt of Northeast Africa and Adjacent Areas: Tectonic Evolution and Economic Aspects of a Late Proterozoic Orogen, Vieweg and Sohn. Braunschweig, Wiesbaden, 1988, pp.17-65.

[26]   B. A. Van Der Pluijm and S. Marshak, “Earth Structure,” 2nd Edition, Norton Publication House, New York, 2004.

[27]   J. Poblet, and R. J. Lisle, “Kinematic Evolution and Structural Styles of Fold-And-Thrust Belts,” Geological Society of London, Special Publication, Vol. 349, 2011, pp. 1-24.

[28]   J. Casey Moore, and E. A. Silver, “Continental Margin Tectonics: Submarine Accretionary Prisms,” Review of Geophysics, Vol. 25, No. 6, 1987, pp. 1305-1312. doi:10.1029/RG025i006p01305

[29]   R. Von Huene and D. W. Scholl, “Observations at Convergent Margins Concerning Sediment Subduction, Subduction Erosion, and the Growth of Continental Crust,” Review of Geophysics, Vol. 29, No. 3, 1991, pp.279-316. doi:10.1029/91RG00969

[30]   M. P. Coward, “Thrust Tectonics, Thin-Skinned or Thick-Skinned and the Continuation of Thrusts to Deep in the Crust,” Journal of Structural Geology, Vol. 5, No. 2, 1983, pp.113-125. doi:10.1016/0191-8141(83)90037-8

[31]   H. Fossen, “Structural Geology,” Cambridge University Press, Cambridge, 2010. doi:10.1017/CBO9780511777806

[32]   G. I. Alsop and S. Marco, “Soft-Sediment Deformation within Seismogenic Slumps of the Dead Sea Basin,” Journal of Structural Geology, Vol. 33, No. 4, 2011, pp. 433-457. doi:10.1016/j.jsg.2011.02.003

[33]   C. D. A. Dahlstrom, “Balanced Cross-Sections,” Canadian Journal of Earth Sciences Vol. 6, No. 4, 1969, pp. 743-757. doi:10.1139/e69-069

[34]   J. L. Rich, “Mechanics of Low-Angle Overthrust Faulting as Illustrated by Cumberland Thrust Block, Virginia, Kentucky, and Tennessee,” American Association of Petroleum Geology Bulletin, Vol. 18, No. 12, 1934, pp. 1584-1596.

[35]   J. Dennis, “Structural Geology,” John & Wiley, New York, 1972.

[36]   N. B. Woodward, “Deformation Styles and Geometric Evolution of Some Idaho-Wyoming Thrust Belt Structures,” In: S. Mitra and G. W. Fisher, Eds., Structural Geology of Fold and Thrust Belts, Johns Hopkins Uni versity Press, Baltimore, 1992, pp. 191-206.

[37]   D. M. Fisher and D. J. Anastasio, “Kinematic Analysis of a Large Scale Leading Edge Fold, Lost River Range, Idaho,” Journal of Structural Geology, Vol. 16, No. , 1994, pp. 337-354. doi:10.1016/0191-8141(94)90039-6

[38]   C. K. Morley, “Fold-Generated Imbricates: Examples from the Caledonides of Southern Norway,” Journal of Structural Geology, Vol. 16, No. 5, 1994, pp.619-631. doi:10.1016/0191-8141(94)90114-7

[39]   J. Suppe, “Geometry and Kinematics of Fault-Bendfolding,” American Journal of Science, Vol. 283, No. 7, 1983, pp. 684-721. doi:10.2475/ajs.283.7.684

[40]   D. Medwedeff, “Growth Fault-Bend Folding at Southeast Lost Hills, San Joaquin Valley, California,” AAPG Bulletin: American Association of Petroleum Geologists, Vol. 73, No. 1, 1989, pp. 54-67.

[41]   W. R. Jamison and A. Pope, “Geometry and Evolution of a Fault-Bend Fold: Mount Bertha Anticline,” Bulletin of Geological Society of America, Vol. 108, No. 2, 1996, pp. 208-224. doi:10.1130/0016-7606(1996)108<0208:GAEOAF>2.3.CO;2

[42]   J. L. Alonso and A. Teixell, “Forelimb Deformation in Some Natural Examples of Fault-Propagation Folds,” In: K. R. McClay, Ed., Thrust Tectonics, Chapman and Hall, London, 1992, pp. 175-180. doi:10.1007/978-94-011-3066-0_15

[43]   B. A. Couzens and W. M. Dunne, “Displacement Transfer at Thrust Terminations: The Saltville Thrust and Sinking Creek anticline, Virginia, U.S.A,” Journal of Structural Geology, Vol. 16, No. 8, 1994, pp.781-793. doi:10.1016/0191-8141(94)90145-7

[44]   E. Tavarnelli, “Evidences for Fault-Propagation Folding in the Umbria-Marche-Sabina Apennines (Central Italy),” Annales Tectonicae, Vol. 7, No. *, 1994, pp.87-99.

[45]   M. A. McNaught and G. Mitra, “A Kinematic Model for the Origin of Footwall Synclines,” Journal of Structural Geology, Vol. 15, No. 6, 1993, pp. 805-808. doi:10.1016/0191-8141(93)90064-H

[46]   R. M. El-Bayoumi and R.O. Greiling, “Tectonic Evolution of a Pan-African Plate Margin in Southeastern Egypt: A Suture Zone Overprinted by Low Angle Thrusting,” In: J. Klerkx and Michot, Eds., African Geology, Tervuren, 1984, pp. 47-56.

[47]   M. A. Abd-Elwahed, “Thrusting and Transpressional Shearing in the Pan-African Nappe Southwest ElSibai Core Complex, Central Eastern Desert, Egypt,” Journal of African Earth Sciences, Vol. 50, No. 1, 2008, pp.16-36. doi:10.1016/j.jafrearsci.2007.09.005

[48]   R. O. Greiling, “Directions of Pan-African Thrusting in the Eastern Desert of Egypt Derived from Lineation and Strain Data. In: G. Matheis and H. Schandelmeier, Eds., Current Research in African Earth Sciences, Balkema, Rotterdam, 1987, pp. 83-86.

[49]   R. O. Greiling, M. M. Abdeen, A. A. Dardir, H. El-Akhal, M. F. El-Ramly, G. M. Kamal El-Din, A. F. Osman, A. A. Rahwan, A. A. Rice and M. F Sadek, “A Structural Synthesis of the Proterozoic Arabian Nubian Shield in Egypt,” Geologische Rundschau, Vol. 83, No. 3, 1994, pp. 484-501. doi:10.1007/BF01083222

[50]   A. Fowler and B. El-Kalioubi, “The Migif-Hafafit Gneissic Complex of the Egyptian Eastern Desert: Fold Interference Patterns Involving Multiply Deformed Sheath Folds,” Tectonophysics, Vol. 346, No. 3-4, 2002, pp. 247-275. doi:10.1016/S0040-1951(01)00259-1

[51]   A. Fowler, K. G. Ali, S. M. Omar and H. Eliwa, “The Significance of Gneissic Rocks and Synmagmatic Extensional Ductile Shear Zones of the Barud Area for the Tectonics of the North Eastern Desert, Egypt,” Journal of African Earth Sciences, Vol. 46, No.3, 2006, pp. 201-220. doi:10.1016/j.jafrearsci.2006.04.011

[52]   A. Fowler, H. Khamees and H. Dowidar, “El-Sibai Gneissic Complex, Central Eastern Desert, Egypt: Folded Nappes and Synkinematic Gneissic Granitoid Sheets Not a Core Complex,” Journal of African Earth Sciences, Vol. 49, No. 4-5, 2007, pp. 119-135. doi:10.1016/j.jafrearsci.2007.08.004

[53]   G. M. Kamal El-Din, A. A. Khudeir and R. O. Greiling, “Tectonic Evolution of a Pan-African Gneiss Culmination, Gabal El Sibai Area, Central Eastern Desert. Egypt,” Zbl. Geol. Paleont. Teil I, Stuttgart, Vol. 1991, No. 11, 1992, pp. 2637-2640.

[54]   M. M. Abdeen, M. G. Abdelsalam, H. M. Dowidar and A. A. Abdelghaffar, “Varying Structural Style along the Neo-Proterozoic Allaqi-Heiani Suture, Southern Egypt,” In: E. Jadida, Ed., The 19th Colloquium of African Geology, Morocco, 2002, 2 p.

[55]   M. G. Abdelsalam, M. M. Abdeen, H. M. Dowidar, R. J. Stern and A. A. Abdelghaffar, “Evolution of the Neoproterozoic Allaqi-Heiani Suture Zone, Southern Egypt,” Precambrian Research, Vol. 124, No. 1, 2003, pp. 87-104. doi:10.1016/S0301-9268(03)00080-9

[56]   M. L. Abdel-Khalek, M. A. Takla, A. Sehim, Z. Hamimi and A. W. El-Manawi, “Geology and Tectonic Evolution of Wadi Beitan Area, South Eastern Desert, Egypt,” Geology of Arab World, Vol. 1, 1992, pp. 369-393.

[57]   M. L. Abdel-Khalek, M. A. Takla, A. Sehim, M. Abdel Wahed, Z. Hamimi and S. Sakran, “Geology and Tectonic Evolution of the Shield Rocks, East Wadi Beitan Area, Southeastern Desert, Egypt,” Egyptian Journal of Geology, Vol. 43, No. 1, 1999, pp.1-15.

[58]   E. Wallbrecher, H. Fritz, A. A. Khudeir and F. Farhad, “Kinematics of Pan-African thrusting and extension in Egypt,” In: U. Thorweihe and H. Schandelmeier, Eds., Geoscientific Research in Northeast Africa. Balkema, Rotterdam, 1993, pp. 7-30.

[59]   Z. Hamimi, M. A. El-Amawy and M. Wetait, “Geology and Structural Evolution of El-Shalul Dome and Environs, Central Eastern Desert, Egypt,” Egyptian Journal of Geology, Vol. 38, No. *, 1994, pp. 575-595.

[60]   Z. Hamimi, M. El-Shafei, G. Kattu and M. Matsah, “Transpressional Regime in Southern Arabian Shield: Insights from Wadi Yiba Area, Saudi Arabia,” Gondwana Collision (Special Publication, Mineralogy and Petrology), 2011.

[61]   G. A. H. Kattu, “Structural Evolution of Wadi Yiba Area, Southern Arabian Shield, Saudi Arabia,” MSc. Thesis, King Abdulaziz University, Jeddah, 2011.

[62]   J. L. Simón, and C. L. Liesa, “Incremental Slip History of a Thrust: Diverse Transport Directions and Internal Folding of the Utrillas Thrust Sheet (NE Iberian Chain, Spain),” Geological Society of London, Special Publication, Vol. 349, 2011, pp.77-97. doi:10.1144/SP349.5