[1] Proschan, F. and Pyke, R. (1967). Tests for monotone failure rate. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, 3, 293-312.
[2] Barlow, R.E. and Proschan, F. (1969). A note on tests of monotone failure rate based on incomplete data. Ann. Math. Statist. 40, 595-600. http://dx.doi.org/10.1214/aoms/11776927
[3] Bickel, P.J. and Doksum, K. (1969). Test for monotone failure rate based on normalized spacings. Ann. Math, Statist. 40, 1216-1235. http://dx.doi.org/10.1214/aoms/1177697498
[4] Bickel, P.J. (1969). Tests of monotone failure rate II. Ann. Math. Statist. 40, 1250-1260. http://dx.doi.org/10.1214/aoms/1177697498
[5] Hollander, R.M., Park, D.H. & Proschan, F.(1986).Testing whether F is “more NBU” than is G.Microelectron. Reliab. Vol.26, No.1, pp.39-44. http://dx.doi.org/10.1016/0026-2714(86)90769-9
[6] Tiwari, R.C. and Zalkikar, J.N. (1988). Testing whether F is “more IFRA than G”. Miroelectron. Reliab. Vol.28, No.5, pp.703-712. http://dx.doi.org/10.1016/0026-2714(88)90006-6
[7] Lim, J.H., Kim, D.K. and Park, D.H. (2005). Tests for detecting more NBU-ness at specific age. Australian and Newziland J.Stat., Vol 47, No.3,329-337.
[8] Pandit, P.V. and Gudaganavar, N.V.(2009). On two-sample test for detecting differences in the IFR property of life distributions. African Journal of Mathematical and Computer Science Research, Vol.2(2), 25-29.
[9] Mugadi,A. R, and Ahmad, I.A. (2010). Classes of statistics for testing exponentiality versus IFR or NBUE alternatives, Vol.62, Nos. 245-246, 17-29.