[1] I. S. Vizirianakis, “Improving Pharmacotherapy Outcomes by Pharmacogenomics: From Expectation to Reality?” Pharmacogenomics, Vol. 6, No. 7, 2005, pp. 701-711. doi:10.2217/14622416.6.7.701
[2] U. Mahlknecht and S. Voelter-Mahlknecht, “Pharmacogenomics: Questions and Concerns,” Current Medical Research and Opinion, Vol. 21, No. 7, 2005, pp. 1041-1047. doi:10.1185/030079905X50633
[3] H.-F. Ji, X.-J. Li and H.-Y. Zhang, “Natural Products and Drug Discovery,” EMBO Reports, Vol. 10, No. 3, 2009, pp. 194-200. doi:10.1038/embor.2009.12
[4] P. Vuorelaa, et al., “Natural Products in the Process of Finding New Drug Candidates,” Current Medicinal Chemistry, Vol. 11, No. 11, 2004, pp. 1375-1389.
[5] C.-W. Yeh, et al., “Suppression of Fatty Acid Synthase in MCF-7 Breast Cancer Cells by Tea and Tea Poly-phenols: A Possible Mechanism for Their Hypolipidemic Effects,” The Pharmacogenomics Journal, Vol. 3, 2003, pp. 267- 276.
[6] N. Chalabi, et al., “Gene Signature of Breast Cancer Cell Lines Treated with Lycopene,” Pharmacogenomics, Vol. 7, No. 5, 2006, pp. 663-672. doi:10.2217/14622416.7.5.663
[7] P. S. Rai, et al., “Genetic Variation in Genes Involved in Folate and Drug Metabolism in a South Indian Population,” Indian Journal of Human Genetics, Vol. 17, No. 1, 2011, pp. 48-53.
[8] C. M. Ulrich, et al., “Pharmacogenetics and Folate Metabolism—A Promising Direction,” Pharmacogenomics, Vol. 3, No. 3, 2002, pp. 299-313. doi:10.1517/14622416.3.3.299
[9] M. Krajinovic, et al., “Role of Polymorphisms in MTHFR and MTHFD1 Genes in the Outcome of Childhood Acute Lymphoblastic Leukemia,” The Pharmacogenomics Journal, Vol. 4, 2004, pp. 66-72. doi:10.1038/sj.tpj.6500224
[10] D. E. Riechers and P. T. Michael, “Structure and Expression of the Gene Family Encoding Putrescine N-Methyl-transferase in Nicotiana Tabacum: New Clues to the Evolutionary Origin of Cultivated Tobacco,” Plant Molecular Biology, Vol. 41, No. 3, 1999, pp. 387-401. doi:10.1023/A:1006342018991
[11] A. Rigbi, et al., “Why Do Young Women Smoke? VI. A Controlledstudy of Nicotine Effects on Attention: Pharmacogenetic Interactions,” The Pharmacogenomics Journal, Vol. 11, No. 1, 2011, pp. 45-52. doi:10.1038/tpj.2010.15
[12] A. Rossini, et al., “CYP2A6 Polymorphisms and Risk for Tobacco-Related Cancers,” Pharmacogenomics, Vol. 9, No. 11, 2008, pp. 1737-1752. doi:10.2217/14622416.9.11.1737
[13] J. K. Yano, et al., “Structures of Human Microsomal Cytochrome P450 2A6 Complexed with Coumarin and Methoxsalen,” Nature Structural and Molecular Biology, Vol. 12, No. 9, 2005, pp. 822-823. doi:10.1038/nsmb971
[14] T. Errerth, et al., “Pharmacogenomics of a Traditional Japanese Herbal Medicine (Kampo) for Cancer Therapy,” Cancer Genomics and Proteomics, Vol. 4, 2007, pp. 81-92.
[15] X. Chen, et al., Shikonin, a Component of Chinese Herbal Medicine, Inhibits Chemokine Receptor Function and Suppresses Human Immunodeficiency Virus Type 1,” Antimicrob Agents Chemother, Vol. 47, No. 9, 2003, pp. 2810-2816. doi:10.1128/AAC.47.9.2810-2816.2003
[16] Y. Yuan and E. Q. Zhou, “A Novel Antiestrogen Agent Shikonin Inhibits Estrogen-Dependent Gene Transcription in Human Breast Cancer Cells,” Breast Cancer Research and Treatment, Vol. 121, No. 1, 2010, pp. 233-240. doi:10.1007/s10549-009-0547-2
[17] S. Blum, et al., “Vitamin E Reduces Cardiovascular Disease in Individuals with Diabetes Mellitus and the Haptoglobin 2-2 Genotype,” Pharmacogenomics, Vol. 11, No. 5, 2010, pp. 675-684. doi:10.2217/pgs.10.17
[18] A. P. Levy and S. Blum, “Pharmacogenomics in Prevention of Diabetic Cardiovascular Disease: Utilization of the Haptoglobin Genotype in Determining Benefit from Vitamin E,” Expert Review of Cardiovascular Therapy, Vol. 5, No. 6, 2007, pp. 1105-1111. doi:10.1586/14779072.5.6.1105
[19] P. N. Mimche, et al., “The Plant-Based Immunomodulator Curcumin as a Potential Candidate for the Development of an Adjunctive Therapy for Cerebral Malaria,” Malaria Journal, Vol. 10, No. 1, 2011, pp. 1-9. doi:10.1186/1475-2875-10-S1-S10
[20] Q. H. Kang and A. P. Chen. “Curcumin Eliminates Oxidized LDL Roles in Activating Hepatic Stellate Cells by Suppressing Gene Expression of Lectin-Like LDL Receptor-1,” Laboratory Investgation, Vol. 89, No. 11, 2009, pp. 1275-1290. doi:10.1038/labinvest.2009.93
[21] J. A. Riancho, “Polymorphisms in the CYP19 Gene that Influence Bone Mineral Density,” Pharmacogenomics, Vol. 8, No. 4, 2007, pp. 339-352. doi:10.2217/14622416.8.4.339
[22] S. C. Blum, et al., “Dietary Soy Protein Maintains Some Indices of Bone Mineral Density and Bone Formation in Aged Ovaricetomized Rats,” The Journal of Nutrition, Vol. 133, No. 5, 2003, pp. 1244-1249.
[23] L. Gennari, et al., “Update on the Pharmacogenetics of the Vitamin D Receptor and Osteoporosis,” Pharmacogenomics, Vol. 10, No. 3, 2009, pp. 417-433. doi:10.2217/14622416.10.3.417
[24] F. Massart, “Human Races and Pharmacogenomics of Effective Bone Treatments,” Gynecological Endocrinology, Vol. 20, No. 1, 2005, pp. 36-44. doi:10.1080/09513590400019437
[25] C. A. Shively, et al., “Soy and Social Stress Affect Serotonin Neurotransmission in Primates,” The Pharmacogenomics Journal, Vol. 3, No. 2, 2003, pp. 114-121. doi:10.1038/sj.tpj.6500166
[26] T. Hiroi, et al., “Protracted Lithium Treatment Protects against the ER Stress Elicited by Thapsigargin in Rat PC12 Cells: Roles of Intracellular Calcium, GRP78 and Bcl-2,” The Pharmacogenomics Journal, Vol. 5, 2005, pp. 102-111.
[27] S. K. Kulkarni and A. Dhir, “An Overview of Curcumin in Neurological Disorders,” Indian Journal of Pharmaceutical Sciences, Vol. 72, No. 2, 2010, pp. 149-154. doi:10.4103/0250-474X.65012
[28] S. Kulkarni, et al., “Anti-depressant Activity of Curcumin: Involvement of Serotonin and Dopamine System,” Psychopharmacology, Vol. 201, No. 3, 2008, pp. 435-442. doi:10.1007/s00213-008-1300-y
[29] E. Erichorn, et al., “Digoxin—New Perspective on an Old Drug,” The New England Journal of Medicine, Vol. 347, No. 18, 2002, pp. 1394-1395. doi:10.1056/NEJMp020118
[30] C. Verstuyft, et al., “Digoxin Pharmacokinetics and MD R1 Genetic Polymorphisms,” European Journal of Clinical Pharmacology, Vol. 58, No. 12, 2003, pp. 809-812.
[31] G. D. Leschziner, et al., “ABCB1 Genotype and PGP Expression, Function and Therapeutic Drug Response: A Critical Review and Recommendations for Future Research,” The Pharmacogenomics Journal, Vol. 7, No. 3, 2007, pp. 154-179. doi:10.1038/sj.tpj.6500413
[32] T. Sakaeda, et al., “Pharmacogenetics of MDR1 and Its Impact on the Pharmacokinetics and Pharmacodynamics of Drugs,” Pharmacogenomics, Vol. 4, No. 4, 2003, pp. 397-410. doi:10.1517/phgs.4.4.397.22747
[33] N. W. Paul and A. D. Roses, “Pharmacogenetics and Pharmacogenomics: Recent Developments, Their Clinical Relevance and Some Ethical, Social, and Legal Implications,” Journal of Molecular Medicine, Vol. 81, No. 3, 2003, pp. 135-140.