[1] Zupanc, G.K.H., Hinsch, K., Gagr, F.H. (2005). Proliferation, migration, neuronal differentiation and long-term survival of new cells in the adult zebrafish brain. J. Comp. Neurol. 488, 290–319. http://onlinelibrary.wiley.com/doi:10.1002/cne.20571
[2] Grandel, H., Kaslin, J., Ganz, J., Wenzel, I., Brand, M. (2006). Neural stem cells and neurogenesis in the adult zebrafish brain: origin, proliferation dynamics, migration and cell fate. Dev. Biol. 295, 263–77. http://dx.doi.org/10.1016/j.ydbio.2006.03.040
[3] Soutschek, J.,and Zupanc, G.K.H. (1996). Apoptosis in the cerebellum of adult teleost fish, Apteronotus leptorhynchus. Dev. Brain Res. 97, 279–286. http://dx.doi.org/10.1016/j.ydbio.2006.03.040
[4] Ampatzis, К., Dermon, С. (2007). Sex differences in adult cell proliferation within the zebrafish (Danio rerio) cerebellum. Eur. J. Neurosci. 25, 1030-1040. doi: 10.1111/j.1460-9568.2007.05366.x
[5] Arevalo, R., Alonso, J.R., Garcia-Ojeda, E., Brinón, J.G., Crespo, C., Aijón, J. (1995). NADPH-diaphorase in the central nervous system of the tench (Tinca tinca L., 1758). J. Comp. Neurol. 352, 398-420. http://onlinelibrary.wiley.com/doi/10.1002/cne.903520307
[6] Bruning, G., Katzbach, R., Mayer, B. (1995). Histochemical and immunocytochemical localization of nitric oxide synthase in the central nervous system of the goldfish, Carassius auratus. J Comp Neurol. 358, 353-382. http://onlinelibrary.wiley.com/doi/10.1002/cne.903580305
[7] Villani, L., Guarnieri, T. (1995). Localization of NADPH-diaphorese in the goldfish brain. Brain Res. 679, 261-266. http://dx.doi.org/10.1016/0006-8993(95)00240-Q
[8] Virgilli, M., Poli, A., Beraudi, A., Giuliani, A., Villani, L. (2001). Regional distribution of nitric oxide synthase and NADPH-diaphorase activities in the central nervous system of teleost. Brain Res. 901, 202-207. http://dx.doi.org/10.1016/S0006-8993(01)02357-5
[9] Bordieri, L., Persichini, T., Venturini, G., Cioni, C. (2003). Expression of nitric oxide synthase in the preoptic-hypothalamo-hypophyseal system of the teleost Oreochromis niloticus. Brain Behav Evol. 62, 43-55. doi: 10.1159/000071959
[10] Jadhao, A.G., Malz, C.R. (2004). Nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase activity in the brain of a cichlid fish, with remarkable findings in the entopeduncular nucleus: a histochemical study. J Chem Neuroanat. 27, 75-86. http://dx.doi.org/10.1016/j.jchemneu.2003.12.001
[11] Perez, S.E., Adrio, F., Rodriguez, M.A., Rodriguez-Moldes, I., Anadon, R. (1996). NADPH-diaphorase histochemistry reveals oligodendrocytes in the rainbow trout (teleosts). Neurosci. Lett. 205, 83-86. http://dx.doi.org/10.1016/0304-3940(96)12379-X
[12] Ma, P.M. (1993). Tanycytes in the sunfish brain: NADPH-diaphorase histochemistry and regional distribution. J. Comp. Neurol. 336, 77-95. http://onlinelibrary.wiley.com/doi/10.1002/cne.903360107
[13] Holmqvist, B., Ellingsen, B., Forsell, J., Zhdanova, I., Alm, P. (2003). The early ontogeny of neuronal nitric oxide synthase systems in the zebrafish. J. Exp. Biol. 207, 923-935. doi: 10.1242/jeb.00845
[14] Bruni, J.E. (1998). Ependymal development, proliferation, and function. Res. Tech. 41, 2-13. http://onlinelibrary.wiley.com/doi/10.1002/%28SICI%291097-0029%2819980401%2941:1%3C2::AID-JEMT2%3E3.0.CO;2-Z
[15] Oqura, T., Nakayama, N., Fujisawa, H., Esumi, H. (1996). Neuronal nitric oxide synthase expression in neuronal cell differentiation. Neurosci. Lett. 204, 89-92. http://dx.doi.org/10.1016/0304-3940(96)12324-7
[16] Cuodhi, B. (2001). Glial cells: basic components of clusters of supramedullary neurons in pufferfish. J. Neurocytol. 30, 503-513. doi: 10.1023/A:1015641201599
[17] Villani, L. (1999). Development of NADPH-diaphorase in the central nervous system of the cichlid fish Tilapia mariae. Brain Behav. Evol. 54, 147-158. doi: 10.1159/000006619
[18] Holmqvist, B., Ekstrom, P. (1997). Subcellular localization of neuronal nitric oxide synthase in the brain of a teleost; an immunoelectron and confocal microscopical study. Brain Res. 745, 67-82. http://dx.doi.org/10.1016/S0006-8993(96)01128-6
[19] Merkulov, G. A. (1969) Course of Pathological/Histological Technique [in Russian], Meditsina, Leningrad. 423 p.
[20] Fritsche, R., Schwerte, T., Peltser, B. (2000). Nitric oxide and vascular reactivity in developing zebrafish, Danio rerio. Am. J. Phisiol. Reg. Int. Comp. Physiol. 279, 2200-2207. http://ajpregu.physiology.org/content/279/6/R2200
[21] Devades, M., Liu, Z., Kaneda, M., Arai, K., Matsukawa, T., Kato, S. (2001). Changes in NADPH diphorase expression in the fish visual system during optic nerve regeneration and retinal development. Neurosci. Res. 40, 359-365. http://dx.doi.org/10.1016/S0168-0102(01)00251-6
[22] Holmqvist, B., Ellingsen, B., Alm, P., Forsell, J., Oyan, A., Goksoyr, A., Fjose, A., Seo, H. (2000). Identification and distribution of nitric oxide synthase in the brain of adult zebrafish. Neurosci Lett. 292, 119-122. http://dx.doi.org/10.1016/S0304-3940(00)01460-9
[23] Wulliman, M.F., Knipp, S. (2000). Proliferation patterns changes in the zebrafish brain from embryonic through early postembryonic stages. Anat. Embriol. 202, 385-400. http://www.springerlink.com/content/yahxhg9tvvq64clm doi: 10.1007/s004290000115
[24] Mize, R.R., Dawson, T.M., Dawson, V.L., Friedlander, M.J. (1998). Nitric oxide in brain development, plasticity and disease. Progress in Brain Research. Amsterdam: Elsevier Science, 118, 1-302.
[25] Puenova, N., Scheinker, V., Cline, H., Enikolopov, G. (2001). Nitric oxide is an essential negative regulator of cell proliferation in Xenopus brain. J. Neurosci. 21, 8809-8818. http://www.jneurosci.org/content/21/22/8809.
[26] Sturrock, R.R. (1981) An electron microscopic study of the development of the ependyma of the central canal of the mouse spinal cord. J. Anat. 132, 119-136. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1233400
[27] Abbate, F., Laura, R., Muglia, U., Bronzetti, P. (1993) Differentiation of ependymal surface of lateral ventricles in fetus and newborn rabbits: observations by SEM. Anat. Histol. Embriol. 22, 348-254. http://www.ncbi.nlm.nih.gov/pubmed/8129170
[28] Bicker, G. (2005). Stop and go with NO: nitric oxide as regulator of cell motility in simple brains. BioEssays. 27, 495-505. http://onlinelibrary.wiley.com/doi/10.1002/bies.20221
[29] Romero-Grimaldi, C., Moreno-Lуpez, B., Estrada, C. (2008) Age-dependent effect of nitric oxide on subventricular zone and olfactory bulb neural precursor proliferation. J. Comp. Neurol., 506, 339–346. http://onlinelibrary.wiley.com/doi/10.1002/cne.21556
[30] Islam, A.T., Kuraoka, A., Kawabuchi, M. (2003) Morphological basis of nitric oxide production and its correlation with the polysialylated precursor cells in the dentate gyrus of the adult guinea pig hippocampus. Anat. Sci. Int., 78, 98-103. http://www.springerlink.com/content/q484550176361710
[31] Moreno-Lopez, B., Noval J.A., Gonzalez-Bonet L.G., Estrada C. (2000). Morphological bases for a role of nitric oxide in adult neurogenesis. Brain Res. 869, 244-250. http://dx.doi.org/10.1016/S0006-8993(00)02474-4
[32] Kalinichenko, S. G., and Matveeva N. Yu. (2008). Morphological Characteristics of Apoptosis and Its Significance in Neurogenesis. Neurosci. Behav. Physiol. 38(4), 333-344. doi: 10.1007/s11055-008-0046-7
[33] Reutov, V. P. (2000). Medical-biological aspects of the nitric oxide and superoxide anion radical cycles. Vest. Ross. Akad. Med. Nauk, 4, 35–41. http://www.ncbi.nlm.nih.gov/pubmed/10832412
[34] Beckman, J.S. (1996). The physiology and pathophysiological chemistry of nitric oxide. Nitric oxide: principles and actions. San Diego: Acafemic Pressw, 1-82.
[35] Estvez, A.G., Spear, N., Manuel, S.M. (1998). Nitric oxide and superoxide contribute to motor neuron apoptosis induced by trophic factor deprivation. J. Neurosci. 18, 923-931. http://www.jneurosci.org/content/18/3/923
[36] Brune, B., Sandau, K., Von Kneten A. (1998) Apoptotic cell death and nitric oxide: mechanisms of activation and antagonistic signal pathways (review). Biokhimiya, 63(7), 966–975. http://www.ncbi.nlm.nih.gov/pubmed/9721334
[37] Zupank, G.K.H. (2009). Towards brain repair: Insights from teleost fish. Seminars in Cell & Devel. Biol. 20, 683-690. http://dx.doi.org/10.1016/j.semcdb.2008.12.001
[38] Pushchina, E.V., Fleishman, M. Yu., Timoshin, S.S. (2007) Proliferative zones in the brain of the Amur sturgeon fry. Interaction with neuromeres and migration of secondary matrix zones. Rus. J. Dev. Biol. 38, 286-293. http://www.ncbi.nlm.nih.gov/pubmed/18038653
[39] Zupank, G.K.H. (1999). Neurogenesis, cell death and regeneration in the adult gymnotiform brain. J. Exp. Biol. 202, 1435-1446. http://jeb.biologists.org/content/202/10/1435.long
[40] Pushchina, E.V. (2007). Nitric oxide-ergic organization of medullar cranial nuclei in teleost fishes. Tsitologiia. 49(6), 471-83. http://www.ncbi.nlm.nih.gov/pubmed/17802744
[41] Pushchina, E.V., Varaksin, A.A. (2001). Argyrophilic and nitric oxidergic bipolar neurons in cerebellum of the opisthocentrus Pholidapus dybowskii. J. Evol. Biochem. and Physiol. 37(5), 569-575. http://www.ncbi.nlm.nih.gov/pubmed/11771249
[42] Ikenaga, T., Yoshida, M., Uematsu, K. (2006). Cerebellar efferent neurons in teleost fish. Cerebellum. 5, 268–274. http://www.springerlink.com/content/h82731v07j781700
[43] Brandst?tter, R., Kotrschal, K. (1990). Brain growth patterns in four European cyprinid fish species (Cyprinidae, Teleostei): roach (Rutilus rutilus), bream (Abramis brama), common carp (Cyprinus carpio) and sabre carp (Pelecus cultratus). Brain Behav. Evol. 35, 195–211. http://www.ncbi.nlm.nih.gov/pubmed/2379081
[44] Marcus, R.C., Delaney, C.L., Easter, S.S. (1999). Neurogenesis in the visual system of embryonic and adult zebrafish (Danio rerio). Vis. Neurosci. 16, 417–424. http://www.ncbi.nlm.nih.gov/pubmed/10349963
[45] Kubota, R., Hokoc, J. N., Moshiri, A., McGuire, C., Reh, T.A. (2002). A comparative study of neurogenesis in the retinal ciliary marginal zone of homeothermic vertebrates. Brain Res. Dev. Brain Res. 134, 31–41. http://dx.doi.org/10.1016/S0165-3806(01)00287-5
[46] Rakic, P. (2004). Neuroscience: immigration denied. Nature. 427, 685–686. http://www.nature.com/nature/journal/v427/n6976/full/427685a.html
[47] Song, H., Kempermann. G., Overstreet Wadiche, L., Zhao, C., Schinder, A.F., Bischofberger, J. (2005). New neurons in the adult mammalian brain: synaptogenesis and functional integration. J. Neurosci. 25, 10366–10368. http://www.jneurosci.org/content/25/45/10366.
[48] Lledo, P. M., Alonso, M., Grubb, M. S. (2006). Adult neurogenesis and functional plasticity in neuronal circuits. Nat. Rev. Neurosci. 7, 179–193. http://www.nature.com/nrn/journal/v7/n3/full/nrn1867.html.