Back
 OJF  Vol.2 No.4 , October 2012
Effect of Spatial Scale on Modeling and Predicting Mean Cavity Tree Density: A Comparison of Modeling Methods
Abstract: Cavity trees are integral components of healthy forest ecosystems and provide habitat and shelter for a wide variety of wildlife species. Thus, monitoring and predicting cavity tree abundance is an important part of forest management and wildlife conservation. However, cavity trees are relatively rare and their abundance can vary dramatically among forest stands, even when the stands are similar in most other respects. This makes it difficult to model and predict cavity tree density. We utilized data from the Missouri Ozark Forest Ecosystem Project to show that it is virtually impossible to accurately predict cavity tree occurrence for individual trees or to predict mean cavity tree abundance for individual forest stands. However, we further show that it is possible to model and predict mean cavity tree density for larger spatial areas. We illustrate the prediction error monotonically decreases as the spatial scale of predictions in-creases. We successfully explored the utility of three classes of models for predicting cavity tree probability/density: logistic regression, neural network, and classification and regression tree (CART). The results provide valuable insights into methods for landscape-scale mapping of cavity trees for wildlife habitat management, and also on sample size determination for cavity tree surveys and monitoring.
Cite this paper: Lee, S. & Fan, Z. (2012). Effect of Spatial Scale on Modeling and Predicting Mean Cavity Tree Density: A Comparison of Modeling Methods. Open Journal of Forestry, 2, 219-224. doi: 10.4236/ojf.2012.24027.
References

[1]   Breiman, L. (1995). Stacked regressions. Machine Learning, 24, 49-64. doi:10.1007/BF00117832

[2]   Breiman, L. (1996). Bagging predictors. Machine Learning, 26, 123140. doi:10.1007/BF00058655

[3]   Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees. Monterey, CA: Wadsworth and Brooks.

[4]   Brookshire, B. L., & Shifley, S. R. (Eds.) (1997). Proceedings of the Missouri Ozark Forest Ecosystem Project Symposium: An Experimental Approach to Landscape Research, St. Louis, 3-5 June 1997.

[5]   Carey, A. B. (1983). Cavities in trees in hardwood forests. Snag habitat management symposium. General Technical Report GTR-RM-99, US Department of Agriculture Forest Service, 167-184.

[6]   Eskelson, B. N., Temesgen, H., & Barrett, T. M. (2009). Estimating cavity tree and snag abundance using negative binomial regression models and nearest neighbor imputation methods. Canadian Journal of Forest Research, 39, 1749-1765. doi:10.1139/X09-086

[7]   Fan, Z., Larsen, D. R., Shifley, S. R., & Thompson III, F. R. (2003a). Estimating cavity tree abundance by stand age and basal area, Missouri, USA. Forest Ecology and Management, 179, 231-242. doi:10.1016/S0378-1127(02)00522-4

[8]   Fan, Z., Lee, S., Shifley, S. R., Thompson III, F. R., & Larsen, D. R. (2004a). Simulating the effect of landscape size and age structure on cavity tree density using resampling technique. Forest Science, 50, 603-609.

[9]   Fan, Z., Shifley, S. R., Spetich, M. A., Thompson III, F. R., & Larsen, D. R. (2003b). Distribution of cavity trees in Midwestern old-growth and second-growth forests. Canadian Journal of Forest Research, 33, 1481-1494. doi:10.1139/x03-068

[10]   Fan, Z., Shifley, S. R., Spetich, M. A., Thompson III, F. R., & Larsen, D. R. (2005). Abundance and size distribution of cavity trees in second-growth and old-growth central hardwood forests. Northern Journal of Applied Forestry, 22,162-169.

[11]   Fan, Z., Shifley, S. R., Thompson III, F. R., & Larsen, D. R. (2004b). Simulated cavity tree dynamics under alternative timber harvest regimes. Forest Ecology and Management, 193, 399-412. doi:10.1016/j.foreco.2004.02.008

[12]   Hand, D. J. (1997). Construction and assessment of classification rules. New York, NY: Wiley.

[13]   Harrell Jr., F. E., Lee, K. L., & Mark, D. B. (1996). Multivariable prognostic models: Issue in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Statistics in Medicine, 15, 361-387. doi:10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4

[14]   Hertz, J. A., Krogh, A. S., & Palmer, R. G. (1991). Introduction to the theory of neural computation. Redwood City, CA: Addison-Wesley.

[15]   Jensen, R. G., Kabrick J. M., & Zenner, E. K. (2002). Tree cavity estimation and verification in the Missouri Ozarks. General Technical Report GTR-NC-1227, US Department of Agriculture Forest Service, 114-129.

[16]   Johnson, R. A., & Wichern, D. W. (1992). Applied Multivariate Statistical Analysis. Upper Saddle River, NJ: Prentice Hall.

[17]   Lawler, J. J., & Edwards, T. C. (2002). Landscape patterns as predictors of nesting habitat: Building and testing models for four species of cavity-nesting birds in the Uinta Mountains of Utah, USA. Landscape Ecology, 17, 233-245. doi:10.1023/A:1020219914926

[18]   McClelland, B. R., & Frissell, S. S. (1975). Identifying forest snags useful for hole-nesting birds. Journal of Forestry, 73, 414-417.

[19]   Myers, R. H. (1990). Classical and Modern Regression with Applications. Boston: PWS Publishing Company.

[20]   Ripley, B. D. (1996). Pattern recognition and neural networks. Cambridge: Cambridge University Press.

[21]   Sheriff, S. L. (2002). Missouri Ozark Forest Ecosystem Project: The experiment. General Technical Report GTR-NC-227, US Department of Agriculture Forest Service, 1-25.

[22]   Sheriff, S. L., & He, Z. (1997). The experimental design of the Missouri Ozark Forest Ecosystem Project. General Technical Report GTRNC-193, U.S. Department of Agriculture Forest Service, 26-40.

[23]   Titus, R. (1983). Management of snags and cavity trees in Missouri—A process. Snag habitat management symposium. General Technical Report GTR-RM-99, US Department of Agriculture Forest Service, 51-59.

[24]   Venables, W. N., & Ripley B. D. (1994). Modern applied statistics with S-plus. New York: Springer-Verlag.

[25]   Wolpert, D. (1992). Stacked generalization. Neural Networks, 5, 241259. doi:10.1016/S0893-6080(05)80023-1

 
 
Top