ABB  Vol.3 No.6 A , October 2012
Maternally-preset program of apoptosis and caspases involved in execution of the apoptosis at midblastula transition (MBT) but not before in Xenopus laevis embryogenesis
Author(s) Koichiro Shiokawa*
ABSTRACT
To study gene control mechanisms in Xenopus embryos, we analyzed polyamines, cloned SAMDC (S-adenosylmethionine decarboxylase), a key enzyme of polyamine metabolism, and microinjected its mRNA into Xenopus fertilized eggs. The microinjection induced a large increase in SAMDC activity, exhaustion of the substrate SAM (S-adenosylmethionine), and execution of apoptosis at the stage called midblastula transition (MBT). By tracing GFP (green fluorescence protein)-marked apoptotic cells, we reached a conclusion that the apoptosis provides pre-blastula embryos with a fail-safe mechanism of early development. We analyzed caspase mRNAs and found that caspase-9 and -3 mRNAs are maternal mRNA and activation of caspase-9 is one of the key steps for the execution of the apoptosis. We also found that over- expression of caspase-8, and in addition p53, a tumor suppressor protein, also induces apoptosis at MBT, just like the overexpression of SAMDC and caspase-9 does. The apoptosis induced by p53 was suppressed by Xdm-2, a negative regulator of p53, and by a peptide inhibitor and a dominant-negative type mutant of caspase-9, but not by those of caspase-8. By contrast, apoptosis induced by SAMDC was suppressed by peptide inhibitors and dominant-negative mutants of both caspase-9 and caspase-8, but not by Xdm-2. Unlike caspase-9 mRNA, caspase-8 mRNA was not a maternal mRNA, but newly expressed during cleavage stage (pre-MBT stage) only in embryos overexpressed with SAMDC. In SAMDC-induced apoptotic embryos activities to process procaspase-8 and procaspase-9 appeared, whereas in p53-induced apoptotic embryos only activity to process procaspase-9 appeared. Thus, Xenopus embryos have at least two pathways to execute the maternal program of apoptosis: One induced by SAMDC overexpression through activation of caspase-9 and do novo expression of caspase-8 gene, and the other induced by p53 overexpression through activation of caspase-9 but not caspase-8. In Xenopus embryos, it has long been believed that zygotic genes are silent until MBT, but results obtained with caspase-8 may provide a novel example of gene expression before MBT.

Cite this paper
Shiokawa, K. (2012) Maternally-preset program of apoptosis and caspases involved in execution of the apoptosis at midblastula transition (MBT) but not before in Xenopus laevis embryogenesis. Advances in Bioscience and Biotechnology, 3, 751-769. doi: 10.4236/abb.2012.326096.
References
[1]   Nieuwkoop, P. D. and Faber, J. (1967) Normal Table of Xenopus laevis (Daudin), North Holland, Amsterdam.

[2]   Estabel, J., Koenig, N., Shiokawa, K and Exbrayat, J.-M. (2005) In: Scovassi, A. I. Ed., Apoptosis, Research Signpost, Kerala, India, 145-167.

[3]   Glucksman, A. (1951) Cell deaths in normal vertebrate ontogeny. Biological Review, 26, 59-86.

[4]   Imoh, H. (1986) Cell death during normal gastrulation in the newt, Cynops pyrrhogaster. Cell Differentiation, 19, 35-42.

[5]   Sible, J. C., Anderson, J. A., Lewelly, A. L. and Maller, J. L. (1997) Zygotic transcription is required to block a maternal program of apoptosis in Xenopus embryos. Developmental Biology, 189, 335-346.

[6]   Hensey, C. and Gautier, J. (1997) A developmental timer that regulates apoptosis at the onset of gastrulation. Mechanism of Development, 69, 183-195.

[7]   Shibata, M., Shing, J., Yasuhiko, Y., Kai, M., Miura, K., Shimogori, T., Kashiwagi, K., Igarashi, K. and Shiokawa, K. (1998) Overexpression of S-adenosylmethionine decarboxylase (SAMDC) in early Xenopus embryos induces cell dissociation and inhibits transition from the blastula to gastrula stage. International Journal of Developmental Biology. 42, 675-686.

[8]   Hensey, C. and Gautier, J. (1998) Programmed cell death during Xenopus development: A spatial-temporal analysis. Developmental Biology, 203, 36-48.

[9]   Kai, M., Higo, T., Yokoska, J., Kaito, C., Kajita, E., Fukamachi, H., Takayama, E., Igarashi, K. and Shiokawa, K. (2000) Overexpression of S-adenosylmethionine decarboxylase (SAMDC) activates the maternal program of apoptosis shortly after MBT in Xenopus embryos. Internationa Journal of Developmental Biology, 44, 507-510.

[10]   Hensey, C. and Gautier, J. (1999) Developmental regulation of induced and programmed cell death in Xenopus embryos. Annals of the New York Academy of Sciences, 887, 105-119.

[11]   Finkielstein, C. V., Lewellyn, A. L. and Maller, J. L. (2001) The midblastula transition in Xenipus embryos activates nultiple pathways to prevent apoptosis in response to DNA damage. Proceedings of National Academy of Science of USA, 98, 1006-1011.

[12]   Anderson, J. A., Lewellyn, A. L., and Maller, J. L. (1997) Ionizing radiation induces apoptosis and elevates cyclin A1-Cdk2 activity before but not after the midblastula transition in Xenopus. Molecular Biology of Cell, 8, 1195-206.

[13]   Tribulo, C., Aybar, M. Sanchez, S. S. and Mayor, R. (2004) A balance between the anti-apoptotic activity of Slug and the apoptotic activity of msx1 is required for the proper development of the neural crest. Developmental Biology, 275, 325-342.

[14]   Shinga, J., Itoh, M., Shiokawa, K., Taira, S. and Taira, M. (2001) Early patterning of the prospective midbrain-hinfdbrain boundary by the HES-related gene XHR1 in Xenopus embryos. Mechanisms of Development, 109, 225-239.

[15]   Estabel, J., Mercer. A., Konig, N. and Exbrayat, J.-M. (2003) Programmed cell death in Xenopus laevis spinal cord, tail and other tissues, prior to, and during, metamorphosis. Life Science, 73, 3297-3306.

[16]   Rowe, I., Coen, L., Le Blay, K., Le Mével, S. and Demeneix, B. (2002) Autonomous regulation of muscle fibre fate during metamorphosis in Xenopus tropicalis. Developmental Dynnamics, 224, 381-390.

[17]   Shi, Y-B. and Brown, D. D. (1993) The earliest changes in gene expression in tadpole intestine induced by thyroid hormone. Journal of Biological Chemistry, 268, 20312-20317.

[18]   Das, B., Schreider, A. M., Huang, H. and Brown, D. D. (2002) Multiple thyroid hormone-induced muscle growth and death programs during metamorphosis in Xenopus laevis. Proceedings of National Academy of Science of USA, 99, 12230-12235.

[19]   Signoret, J. and Lefresne, J. (1973) Contribution à l'étude de la segmentation de l'oeuf d'axolotl. II. Influence de modifications du noyau et du cytoplasme sur les modalités de la segmentation. Annuals of Embryology and Morphology, 6, 299-307.

[20]   Newport, J. and Kirschner, M. (1982) A major developmental transition in early Xenopus embryos: I. Characterization and timing of cellular changes at the midblastula stage. Cell, 30, 675-686.

[21]   Nakakura, N., Miura, T., Yamana, K., Ito, A. and Shiokawa, K. (1987). Synthesis of heterogeneous mRNA-like RNA and low-molecular-weight RNA before the midblastula transition in embryos of Xenopus laevis. Developmental Biology, 123, 421-429.

[22]   Shiokawa, K., Kurashima, R. and Shinga, J. (1994) Temporal control of gene expression from endogenous and exogenously-introduced DNAs in early embryogenesis of Xenopus laevis. International Journal of Developmental Biology, 38, 249-255.

[23]   Shiokawa, K., Misumi, Y. Tashiro, K. xxxxxx and Yaman, K. (1989) Changes in the patterns of RNA synthesis in early embryogenesis of Xenopus laevis. Cell Differentiaion, 28, 17-25.

[24]   Yang, J., Tan, C., Darken, R. S., Wilson, P. A. and Klein P. S. (2002) β-Catenin/Tcf regulated transcription prior to the midblastula transition. Development, 129, 5743-5752.

[25]   Heasman, J. (2006) Patterning the early Xenopus embryo. Development, 133, 1205-1217.

[26]   Graham, C. F. and Morgan, R. W. (1966) Changes in the cell cycle during early amphibian development. Developmental Biology, 14, 439-460.

[27]   Minoura, I., Nakamura, H., Tashiro, K. and Shiokawa, K. (1995) Stimulation of circus movement by activin, bFGF and TGF-beta 2 in isolated animal cap cells of Xenopus laevis. Mechanism of Development, 49, 65-69.

[28]   Carter, A. D. and Sible, J. C. (2003). Loss of XChk1 function triggers apoptosis after the midblastula transition in Xenopus embryos. Mechanism of Development, 120, 315-323.

[29]   Wroble, B. N. and Sible, J. C. (2005) Chk2/Cds1 protein kinase blocks apoptosis during early development of Xenopus laevis. Developmental Dynamics, 233, 1359-1365.

[30]   Shiokawa, K., Misumi, Y. and Yamana, K. (1981) Demonstration of rRNA synthesis in pre-gastrular embryos of Xenopus laevis. Development Growth and Differentiation, 23, 579-587.

[31]   Shiokawa, K., Tashiro, K., Misumi, Y. and Yamana, K. (1981) Non-coordinated synthesis of RNA’s in pre-gastrular embryos of Xenopus laevis. Development, Growth and Differentiation, 23, 589-597.

[32]   Nakahashi, T. and Yamana, K. (1976) Biochemical and cytological examination of the initiation of ribosomal RNA synthesis during gastrulation of Xenopus laevis. Development, Growth and Differentiation, 18, 329-339.

[33]   Shiokawa, K., Yamana, K., Fu, Y., Atsuchi, Y. and Hosokawa, K. (1990) Expression of exogenously introduced bacterial chloramphenicol acetyltransferase gene in Xenopus laevis embryos before the midblastula transition. Roux’s Archive of Developmental Biology, 198, 322-329.

[34]   Etkin, L. D. and Balcells, S. (1985) Transformed Xenopus embryos as a transient expression system to analyze gene expression at the midblastula transition. Developmental Biology, 108, 173-178.

[35]   Kappas, N. C., Savage, P., Chen, K. C., Walls, A. T. and Sible, J. C. (2000) Dissection of the XCHk1 signaling pathway in Xenopus laevis embryos. Molecular Biology of the Cell, 11, 3101-3108.

[36]   Petrus, M. J., Wilhem, D. E., Murakami, M., Kappas, M.C., Carter, A.D., Wroble, B.N. and Sible, J. C. (2004) Altered expression of Chk1 disrupts cell cycle remnodeling at the midblastula transition in Xenopus laevis embryos. Cell Cycle, 3, 212-217.

[37]   Taber, C. W. and Taber, H. (1984) Polyamines. Annual Review of Biochemistry, 53, 749-790.

[38]   Pegg, A. E. (1986) Recent advances in the biochemistry of polyamines in eukaryotes. Biochemical Journal, 234, 249-262.

[39]   Davis, R. H., Morris, D. R. and Coffino, P. (1992) Sequestered end products and enzyme regulation: the case of ornithine decarboxylase. Microbiological Review, 56, 280-290.

[40]   Guirard, B. M. and Snell, E. E. (1964) Effect of polyamine structure on growth stimulation and spermine and spermidine content of lactic acid bacteria. Journal of Bacteriology, 88, 72-80.

[41]   Fozard, J. R., Part, M., Prakash, N. J., Grove, J., Schechter, P. J., Sjoerdsma, A. and Koch-Weser, J. (1980) L-Ornithine decarboxylase: an essential role in early mammalian embryogenesis. Science, 208, 505-508.

[42]   Loewkvist, B., Emanuelsson, H. and Heby, O. (1985) Changes in polyamine synthesis and concentrations dur-ing chick embryo development. Journal of Experimental Zoology, 234, 375-382.

[43]   Kusunoki, S. and Yasumasu, I. (1978) Inhibitory effect of alpha-hydrazinoornithine on egg cleavage in sea urchin eggs. Developmental Biology, 67, 336-345.

[44]   Emanuelsson, H. and Heby, O. (1978) Inhibition of putrescine synthesis blocks development of the polychete Ophryotrocha labronica at gastrulation. Proceedings of National Academy of Science of USA, 75, 1039-1042.

[45]   Dion, A. S. and Herbst, E. J. (1970) Polyamine changes during development of Drosophila melanogaster. Annual of New York Academy of Science, 171, 723-734.

[46]   Osborne, H. B., Mulner-Lorillon, O., Marot, J. and Belle, R. (1989) Polyamine levels during Xenopus laevis oogenesis: a role in oocyte competence to meiotic resumption. Biochemical and Biophysical Research Com-munications, 158, 520-526.

[47]   Shinga, J., Kashiwagi, K., Toshiro, K., Igarashi, K. and Shiokawa, K. (1996) Maternal and zygotic expression of mRNA for S-adenosylmethionine decarboxylase and its relevance to the unique polyamine composition in Xenopus oocytes and embryos. Biochimica et Biophysica Acta, 1308, 31-40.

[48]   Sunkara, P. S., Wright, D. A. and Nishioka, K. (1981) An essential role for putrescine biosynthesis during meiotic maturation of amphibian oocytrd. Developmental Biology, 87, 351-355.

[49]   Younglai, E. V., Godeau, F., Mester, J. and Baulieu, E. E. (1980) Increased ornithine decarboxylase activity during meiotic maturation in Xenopus laevis oocytes. Biochemical and Biophysical Research Communications, 96, 1274-1281.

[50]   Osborne, H. B., Duval, C., Ghoda, L., Omilli, F., Bassez, T. and Coffino, P. (1991) Expression and post-ytanslational regulation of ornithine decarboxylase during early Xenopus development. European Journal of Biochemistry, 202, 575-581.

[51]   Osborne, H. B., Cormier, P., Lorillon, O., Maniey, D. and Belle, R. (1993) Anappraisal of the devekiomental importance of polyamine changes in early Xenopus embryos. International Journal of Developmental Biology, 37, 615-618.

[52]   Rosander, U., Holm, I., Grahn, B., Lovtrup-Rein, H., Mattsson, M. and Heby, O. (1995) Down-regulation of ornithine decarboxylase by an increased degradation of the enzyme during gastrulation of Xenopus laevis. Biochimica et Biophysica Acta, 1264, 121-128.

[53]   Russell, D. H. (1971) Putrescine and spermidine biosynthesis in the development of normal and anucleokate mutants of Xenopus laevis. Proceedings of National Academy of Science of USA, 68, 523-527.

[54]   Heby, O. and Persson, L. (1990) Molecular genetics of polyamine synthesis in eukaryotic cells. Trends in Biochemical Science, 15, 153-158.

[55]   Suzuki, T., Sadakata, Y., Kashiwagi, K., Hoshino, K., Kakinuma, Y., Shirahata, A. and Igarashi, K. (1993) Overproduction of S-adenosylmethionine decarboxylase in ethylglyoxal-bis(guanylhydrazone)-resistant mouse FM3A cells. European Journal of Biochemistry, 215, 247-253.

[56]   Yang, J., Liu, X., Bhalla, K., Kim, C. N., Ibrado, A. M., Cai, J., Peng, T.-I., Jones, D. P. and Wang, X. (1997) Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science, 275, 1129-1132.

[57]   Kluck, R. M., Bossy-Wetzel, E., Green, D. R. and Newmeyer, D. D. (1997). The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science, 275, 1132-1136.

[58]   Curz-Reyes, J. and Tata, J. R. (1995) Cloning, characterization and expression of two Xenopus bcl-2-like cell-survival genes. Gene, 158, 171-179.

[59]   Stack, J. H. and Newport, J. W. (1997) Developmentally regulated activation of apoptosis early in Xenopus gastrulation results in cyclin A degradation during interphase of the cell cycle. Development, 124, 3185-3195.

[60]   Kaito, C., Kai, M., Higo, T., Takayama, E., Fukamachi, H., Sekimizu, K. and Shiokawa, K. (2001) Activation of the maternally preset program of apoptosis by microinjection of 5-aza-2’-deoxycytidine and 5-methyl-2’-deoxycytidine-5’-triphosphate in Xenopus laevis embryos. Development, Growth and Differentiation, 43, 383-390.

[61]   Kai, M., Kaito, C., Fukamachi, H., Higo, T., Takayama, E., Hara, H., Ohya, Y., Igarashi, K. and Shiokawa, K. (2003) Overexpression of S-adenosylmethionine decarboxylase (SAMDC) in Xenopus embryos activates maternal program of apoptosis as a “fail-safe” mechanism of early embryogenesis. Cell Research, 13, 147-158.

[62]   Shiokawa, K., Kai, M., Higo, T., Kaito, C., Fukamachi, H., Yaoita, Y. and Igarashi, K. (2000) Maternal program of apoptosis activated shortly after midblastula transition by overexpression of S-adenosylmethionine decarbox-ylase in Xenopus early embryos. Comparative Biochemistry and Physiology B, 126, 149-155.

[63]   Ikegami, R., Hunter, P. and Yager, T. D. (1999) Developmental activation of the capability to undergo checkpoint-induced apoptosis in the early zebrafish embryo. Developmental Biology, 209, 409-433.

[64]   Stancheva, I, EI-Maarri, O., Walter, J., Niveleau A. and Meehan, R. R. (2002) DNA methylation at promoter regions regulates the timing of gene activation in Xenopus laevis embryis. Developmental Biology, 243, 155-165.

[65]   Miyanaga, Y., Torregroza, I. and Evans, T. (2002) A maternal Smad protein regulates early embryonic apoptosis in Xenopus laevis. Molecular and Cellular Biology, 22, 1317-1328.

[66]   Trindade, M., Messenger, N., Papin, C., Grimmer, D., Fairclough, L., Tada, M. and Smith, J.C. (2003) Regulation of apoptosis in the Xenopus embryo by Bix3. Development, 130, 4611-4622.

[67]   Murphy, C. R., Sabel, J. L., Sandler, A. D. and Dagle, J. M. (2002) Developmental Dynamics, 225, 597-601.

[68]   Salvesen, G. S. and Dixit, V. M. (1997). Caspases: Intracellular signaling by proteolysis. Cell, 91, 443-446.

[69]   Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S. M., Ahmad, M., Alnemri, E. S. and Wang, S. (1997) Cytochrome C and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic cascade. Cell, 91, 479-489.

[70]   Ona, V. O., Li, M., Vonsattel, J.P.G., Andrews, L. J., Khan, S. Q., Chung, W. M., Frey, A. S., Menon, A. S. and Friedlander, R. M. (1999) Inhibition of caspase-1 slows disease progression in a mouse model of Huntington’s disease. Nature, 399, 263-267.

[71]   Takayama, K., Higo, T., Kai, M., Fukasawa, M., Nakajima, K., Hara, H., Tadakuma, T., Igarashi, K., Yaoita, Y. and Shiokawa, K. (2004) Involvement of caspase-9 in execution of the maternal program of apoptosis in Xenopus late blastulae overexpressed with S-adenosylmethionine decdarboxylase. Biochemical and Biophysical Research Communications, 325, 1367-1375.

[72]   Friedlander, R. M., Gagliardini, V., Hara, H., Fink, K. B., Li, W., MacDonald, G., Fishman, M. C., Greenberg, A. H., Moskowitz, M. A. and Yuan, J. (1997) Expression of a dominant negative mutant of interleukin-1beta converting enzyme in transgenic mice prevents neuronal cell death induced by trophic factor withdrawal and ischemic brain injury. Journal of Experimental Medicine, 185, 933-940.

[73]   Nakajima, K., Takahashi, A. and Yaoita, Y. (2000) Structure, expression, and function of the Xenopus laevis caspase family. Journal of Biological Chemistry, 275, 10484-10491.

[74]   Yaoita, Y. and Nakajima, K. (1997) Induction of apoptosis and CPP32 expression by thyroid hormone in a myoblastic cell line derived from tadpole tail. Journal of Biological Chemistry, 272, 5122-5127.

[75]   Kajita, E., Wakiyama, M., Miura, K., Mizumoto, K., Oka, T., Komuro, I., Miyata, T., Yatsuki, H., Hori, K. and Shiokawa, K. (2000). Isolation and characterization of Xenopus laevis aldolase B cDNA and expression patterns of aldolase A, B, and C genes in adult tissues, oocytes, and embryos of Xenopus laevis. Biochimica et Biophysica Acta, 1493, 101-118.

[76]   Andreassen, O. A., Ferrante, R. J., Hughes, D. B., Klivenyi, P., Dedeoglu, A., Ona, V. O., Friedlander, R. M., and Beal, M. F. (2000) Malonate and 3-nitropropionic acid neurotoxicity are reduced in transgenic mice expressing a caspase-1 dominant-negative mutant. Journal of Neurochemistry, 75, 847-852.

[77]   Slee, E. A., Adrain, C. and Martin, S. J. (1999) Serial killers: ordering caspase activation events in apoptosis. Cell Death and Differentiation, 6, 1067-1074.

[78]   Slee, E. A., Harte, M. T., Kluck, R. M., Wolf, B. B., Casiano, C. A., Newmeyer, D. D., Wang, H. G., Reed, J. C., Nicholson, D. W., Alnemri, E. S., Green, D. R. and Martin, S. J. (1999) Ordering the cytochrome c-initiated caspase cascade: hierarchial activation of caspase-2, -3, -6, -7, -8, and -10 in a caspase-9 dependent manner. Journal of Cellular Biology, 144, 281-292.

[79]   Thornberry, N. A., Rano, T. A., Peterson, E. P., Rasper, D. M., Timkey, T., Garcia-Calvo, M., Houtzager, V. M., Novdstrom, P. A., Roy, S., Vaillancourt, J. P., Chapman, K. T. and Nicholson, D. W. (1997) A combinatorial approach defines specificities of members of the caspase family and granzyme, B. Functional relationsip established for key mediators of apoptosis. Journal of Biological Chemistry, 272, 17907-l7911.

[80]   Shiokawa, K., Takayama, E., Higo, T., Kuroyanagi, S., Kaito, C., Hara, H., Kajitani, M., Sekimizu, K., Tadakuma, T., Miura, K.-I., Igarashi, K. and Yaoita, Y. (2005) Occurrence of pre-MBT synthesis of caspase-8 mRNA and activation of caspase-8 prior to execution of SAMDC (S-adenosylmethionine decarboxylase)-induced, but not p53-induced, apoptosis in Xenopus late blastulae. Biochemical and Biophysical Research Communications, 336, 682-691.

[81]   Wallingford, J. B., Seufert, D. W., Virta, V. C. and Vize, P. D. (1997) p53 activity is essential for normal development in Xenopus. Current Biology, (1997) 7, 747-757.

[82]   Tchang, F., Gusse, M., Soussi, T. and Mechali, M. (1993) Stabilization and expression of high levels of p53 during early development in Xenopus laevis. Developmental Biology, 159, 163-172.

[83]   Hoever, M., Clement, J. H., Wedlich, D., Montenarh, M. and Knochel, W. (1994) Overexpression of wild-type p53 interferes with normal development in Xenopus laevis embryos. Oncogene, 9, 109-120.

[84]   Soussi, T., Caron de Fromentel, C., Mechali, M., May, P. and Kress, M. (1987) Cloning and characterization of a cDNA from Xenopus laevis coding for a protein homologous to human and murine p53. Oncogene, 1, 71-78.

[85]   Momand, J., Zambetti, G. P., Olson, D. C., George, D. and Levine, A. J. (1992) The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell, 69, 1237-1245.

[86]   Marechal, V., Elenbaas, B., Taneyhill, L., Piette, J., Mechali, M., Nicolas, J. C., Levine, A. J. and Moreau, J. (1997) Conservation of structural domains and biochemical activities of the MDM2 protein from Xenopus laevis. Oncogene, 14, 1427-1433.

[87]   Shiokawa, K., Aso, M., Kondo, T., Takai, J.-I., Tashiro, K. and Igarashi, K. (2009) Polyamines and S-adenosylmethionine decarboxylase (SAMDC) in Xenopus embryos and effects of overexpression of SAMDC on Xenopus early embryogenesis. In: Dandrifosse, G. Ed., Biological Aspects of Biogenic Amines, Polyamines and Conjugates, Transworld Research Network, Kerala, India, 113-148.

[88]   Shiokawa, K., Aso, M., Kondo, T., Uchiyama, H., Kuroyanagi, S., Takai, J.-I., Takahashi, S., Kajitani, M., Kaito, C., Sekimizu, K., Takayama, E., Igarashi, K. and Hara, H. (2008) Gene expression in pre-MBT embryos and activation of maternally-inherited program of apoptosis to be executed at around MBT as a fail-safe mechanism in Xenopus early embryogenesis. Gene Regulation and Systems Biologu, 2, 1-19.

 
 
Top