Finding Optimal Allocation of Constrained Cloud Capacity Using Hyperbolic Voronoi Diagrams on the Sphere

Show more

References

[1] S. Gilbert and N. Lynch, “Brewer’s Conjecture and the Feasibility of Consistent, Available, Partition-Tolerant Web Services,” ACM SIGACT News, Vol. 33, No. 2, 2002, pp. 51-59. doi:10.1145/564585.564601

[2] http://docs.amazonwebservices.com/AWSEC2/latest/ UserGuide/using-regions-availability-zones.html.

[3] F. Aurenhammer, “Voronoi Diagrams—A Survey of a Fundamental Geometric Data Structure,” ACM Computing Surveys, Vol. 23, No. 3, 1991, pp. 345-405.
doi:10.1145/116873.116880

[4] P. Bleher and C. Shouraboura, “Placement of Applications in Computing Clouds Using Voronoi Diagrams,” Journal of Internet Services and Applications, Vol. 2, No. 3, 2011, pp. 229-241. doi:10.1007/s13174-011-0037-8

[5] M. Gavrilova, ed., “Generalized Voronoi Diagram: A Geometry-Based Approach to Computational Intelligence (Studies in Computational Intelligence 158),” Springer, New York, 2008.

[6] W. A. Johnson and R. F. Mehl, “Reaction Kinetics in Processes of Nucleation and Growth,” Transactions of the American Institute of Mining, Metallurgical and Petroleum Engineers, Vol. 135, 1939, 416-458.

[7] J. M?ller, “Lectures on Random Voronoi Tessellations. Lecture Notes in Statistics,” Springer-Verlag, New York, 1994. doi:10.1007/978-1-4612-2652-9

[8] A. Okabe, B. Boots, K. Sugihara and S. N. Chiu, “Spatial Tessellations—Concepts and Applications of Voronoi Diagrams,” 2nd edition, John Wiley, Hoboken, 2000.

[9] K. Q. Brown, “Geometric Transforms for Fast Geometric Algorithms,” Ph.D. Dissertation, Carnegie Mellon University, Pittsburgh, 1979.

[10] K. Q. Brown, “Voronoi Diagrams from Convex Hulls,” Information Processing Letters, Vol. 9, No. 5, 1979, pp. 223-228. doi:10.1016/0020-0190(79)90074-7

[11] H.-S. Na, C.-N. Lee and O. Cheong, “Voronoi Diagrams on the Sphere. Computational Geometry: Theory and Applications,” 2002, pp. 183-194.
doi:10.1016/S0925-7721(02)00077-9