CS  Vol.3 No.4 , October 2012
Low Phase Noise and Wide Tuning Range VCO Using the MOS Differential Amplifier with Active Load
ABSTRACT
We demonstrate the design of a novel voltage-controlled oscillator (VCO), which is based on a metal-oxide-semiconductor field-effect transistor (MOS) differential amplifier with active load. This VCO achieves low phase noise and wide tuning range. The phase noise is –120 dBc/Hz at 600 KHz offset from a 1.216 GHz carrier frequency. This value is comparable to that of a LC-based integrated oscillator. The operating frequency can be tuned from 117 MHz to 1.216 GHz with the supply voltage varying from 1.3 V to 3.3 V. Therefore, the tuning range is about 90.38% which is larger than most of the LC and ring oscillator. The VCO circuit, which is constructed using a standard 0.35 μm CMOS technology, occupies only 26.25 × 7.52 μm2 die area and dissipated 10.56 mW under a 3.3 V supply voltage.

Cite this paper
C. Tsai, K. Gan and M. Lin, "Low Phase Noise and Wide Tuning Range VCO Using the MOS Differential Amplifier with Active Load," Circuits and Systems, Vol. 3 No. 4, 2012, pp. 307-310. doi: 10.4236/cs.2012.34043.
References
[1]   P. Andreani and H. Sjoland, “A 2.2 GHz CMOS VCO with Inductive Degeneration Noise Suppression,” Proceedings of the IEEE Conference on Custom Integrated Circuits, San Diego, 6-9 May 2001, pp. 197-200.

[2]   M. Tiebout, “Low-Power Low-Phase-Noise Differentially Tuned Quadrature VCO Design in Standard CMOS,” IEEE Journal of Solid-State Circuits, Vol. 36, No. 7, 2001, pp. 1018-1024. doi:10.1109/4.933456

[3]   P. Andreani, A. Bonfanti, L. Romano and C. Samori, “Analysis and Design of a 1.8-GHz CMOS LC Quadrature VCO,” IEEE Journal of Solid-State Circuits, Vol. 37, No. 12, 2002, pp. 1737-1747. doi:10.1109/JSSC.2002.804352

[4]   C. H. Park and B. Kim, “A Low Noise, 900-MHz VCO in 0.6-μm CMOS,” IEEE Journal of Solid-State Circuits, Vol. 34, No. 5, 1999, pp. 586-591. doi:10.1109/4.760367

[5]   W. S. T. Yan and H. C. Luong, “A 900-MHz CMOS Low-Phase-Noise Voltage-Controlled Ring Oscillator,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, Vol. 48, No. 2, 2001, pp. 216-221. doi:10.1109/82.917794

[6]   H. Wang, N. Wu and G. Shou, “A Novel CMOS Low-Phase-Noise VCO with Enlarged Tuning Range,” Proceedings of the International Conference on Microwave and Millimeter Wave Technology, Nanjing, 21-24 April 2008, pp. 570-573. doi:10.1109/ICMMT.2008.4540456

[7]   L. S. de Paula, S. Bampi, E. Fabris and A. A. Susin, “A Wide Band CMOS Differential Voltage-Controlled Ring Oscillator,” Proceedings of the International IEEE Northeast Workshop on Circuits and Systems and TAISA Conference, Montreal, 22-25 June 2008, pp. 9-12. doi:10.1109/NEWCAS.2008.4606308

[8]   J. Kim, J. Shin, S. Kim and H. Shin, “A Wide-Band CMOS LC VCO with Linearized Coarse Tuning Characteristics,” IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 55, No. 5, 2008, pp. 399-403. doi:10.1109/TCSII.2007.914896

[9]   C. Shi, R. Zhang, L. Chen, Z. Chen and Z. Lai, “A Low Noise VCO with Quadrature Prescaler for UHF RFID Reader,” Proceedings of the International Conference on Wireless Communications and Trusted Computing, Wuhan, 25-26 April 2009, pp. 357-360.

[10]   G. Huang and B. S. Kim, “Low Phase Noise SelfSwitched Biasing CMOS LC Quadrature VCO,” IEEE Transactions on Microwave Theory and Techniques, Vol. 57, No. 2, 2009, pp. 344-351. doi:10.1109/TMTT.2008.2009901

 
 
Top