MSA  Vol.3 No.10 , October 2012
Direct Decomposition of NO into N2 and O2 Over C-type Cubic Y2O3-Tb4O7-ZrO2
ABSTRACT
Catalytic activities for direct NO decomposition were investigated over C-type cubic Y2O3–Tb4O7–ZrO2 prepared by a coprecipitation method. The NO decomposition activity was enhanced by partial substitution of the yttrium sites with terbium in a (Y0.97Zr0.03)2O3.03 catalyst, which shows high NO decomposition activity. Among the catalysts synthesized in this study, the (Y0.67Tb0.30Zr0.03)2O3.33 catalyst exhibited the highest NO decomposition activity; NO conversion to N2 was as high as 67% at 900℃ in the absence of O2 (NO/He atmosphere), and a relatively high conversion ratio was observed even in the presence of O2 or CO2, compared with those obtained over conventional direct NO decomposition catalysts. These results indicate that the C-type cubic Y2O3–Tb4O7–ZrO2 catalyst is a new potential candidate for direct NO decomposition.

Cite this paper
T. Masui, S. Uejima, S. Tsujimoto and N. Imanaka, "Direct Decomposition of NO into N2 and O2 Over C-type Cubic Y2O3-Tb4O7-ZrO2," Materials Sciences and Applications, Vol. 3 No. 10, 2012, pp. 733-738. doi: 10.4236/msa.2012.310107.
References
[1]   Z. Liu and S. I. Woo, “Recent Advances in Catalytic DeNOx Science and Technology,” Catalysis Reviews: Science and Engineering, Vol. 48, No. 1, 2006, pp. 43-89.doi:10.1080/01614940500439891

[2]   M. Iwamoto, H. Yahiro, K. Tanda, N. Mizuno, Y. Mine and S. Kagawa, “Removal of Nitrogen Monoxide through a Novel Catalytic Process. 1. Decomposition on Excessively Copper Ion Exchanged ZSM-5 Zeolites,” The Journal of Physical Chemistry, Vol. 95, No. 9, 1991, pp. 3727-3730. doi:10.1021/j100162a053

[3]   B. L. Trout, A. K. Chakraborty and A. T. Bell, “Analysis of the Thermochemistry of NOx Decomposition over CuZSM-5 Based on Quantum Chemical and Statistical Mechanical Calculations,” The Journal of Physical Chemistry, Vol. 100, No. 44, 1996, pp. 17582-17592.doi:10.1021/jp961470b

[4]   Y. Teraoka, T. Harada and S. Kagawa, “Reaction Mechanism of Direct Decomposition of Nitric Oxide over Co- and Mn-Based Perovskite-Type Oxides,” Journal of the Chemical Society, Faraday Transactions, Vol. 94, No. 13, 1998, pp. 1887-1891. doi:10.1039/a800872h

[5]   T. Ishihara, M. Ando, K. Sada, K. Takiishi, K. Yamada, H. Nishiguchi and Y. Takita, “Direct Decomposition of NO into N2 and O2 over La(Ba)Mn(In)O3 Perovskite Oxide,” Journal of Catalysis, Vol. 220, No. 1, 2003, pp. 104-114. doi:10.1016/S0021-9517(03)00265-3

[6]   H. Iwakuni, Y. Shinmyou, H. Yano, H. Matsumoto and T. Ishihara, “Direct Decomposition of NO into N2 and O2 on BaMnO3-Based Perovskite Oxides,” Applied Catalysis B: Environmental, Vol. 74, No. 3-4, 2007, pp. 299-306.doi:10.1016/j.apcatb.2007.02.020

[7]   M. Haneda, Y. Kintaichi, N. Bion and H. Hamada, “Alkali Metal-doped Cobalt Oxide Catalysts for NO Decomposition,” Applied Catalysis B: Environmental, Vol. 46, No. 3, 2003, pp. 473-482. doi:10.1016/S0926-3373(03)00287-X

[8]   S. Xie, G. Mestl, M. P. Rosynek and J. H. Lunsford, “Decomposition of Nitric Oxide over Barium Oxide Supported on Magnesium Oxide. 1. Catalytic Results and in Situ Raman Spectroscopic Evidence for a Barium-Nitro Intermediate,” Journal of the American Chemical Society, Vol. 119, No. 42, 1997, pp. 10186-10191.doi:10.1021/ja970809k

[9]   Z. Liu, J. Hao, L. Fu and T. Zhu, “Study of Ag/La0.6Ce0.4CoO3 Catalysts for Direct Decomposition and Reduction of Nitrogen Oxides with Propene in the Presence of Oxygen,” Applied Catalysis B: Environmen- tal, Vol. 44, No. 4, 2003, pp. 355-370.doi:10.1016/S0926-3373(03)00103-6

[10]   Y. Teraoka, K. Torigoshi, H. Yamaguchi, T. Ikeda and S. Kagawa, “Direct Decomposition of Nitric Oxide over Stannate Pyrochlore Oxides: Relationship between Solid-State Chemistry and Catalytic Activity,” Journal of Molecular Catalysis A: Chemical, Vol. 155, No. 1-2, 2000, pp. 73-80. doi:10.1016/S1381-1169(99)00320-9

[11]   S. Iwamoto, R. Takahashi and M. Inoue, “Direct Decomposition of Nitric Oxide over Ba Catalysts Supported on CeO2-Based Mixed Oxides,” Applied Catalysis B: Environmental, Vol. 70, No. 1-4, 2007, pp. 146-150.doi:10.1016/j.apcatb.2006.01.016

[12]   H. Iwakuni, Y. Shinmyou, H. Matsumoto and T. Ishihara, “Direct Decomposition of NO into N2 and O2 on SrFe0.7Mg0.3O3 Perovskite Oxide,” Bulletin of the Chemical Society of Japan, Vol. 80, No. 10, 2007, pp. 2039- 2046. doi:10.1246/bcsj.80.2039

[13]   T. Ishihara, Y. Shinmyou, K. Goto, N. Nishiyama, H. Iwakuni and H. Matsumoto, “NO Decomposition on Ruddlesden-Popper-Type Oxide, Sr3Fe2O7, Doped with Ba and Zr,” Chemistry Letters, Vol. 37, No. 3, 2008, pp. 318- 319. doi:10.1246/cl.2008.318

[14]   H. Iwakuni, Y. Shinmyou, H. Yano, K. Goto, H. Matsumoto and T. Ishihara, “Effects of Added CO2 and H2 on the Direct Decomposition of NO over BaMnO3-Based Perovskite Oxide,” Bulletin of the Chemical Society of Japan, Vol. 81, No. 9, 2008, pp. 1175-1182.doi:10.1246/bcsj.81.1175

[15]   Y. Teraoka, K. Torigoshi and S. Kagawa, “Inhibition of NO Decomposition Activity of Perovskite-Type Oxides by Coexisting Carbon Dioxide,” Bulletin of the Chemical Society of Japan, Vol. 74, No. 6, 2001, pp. 1161-1162.doi:10.1246/bcsj.74.1161

[16]   K. Goto, H. Matsumoto and T. Ishihara, “Direct Decomposition of NO on Ba/Ba-Y-O Catalyst,” Topics in Catalysis, Vol. 52, No. 13-20, 2009, pp. 1776-1780.doi:10.1007/s11244-009-9337-7

[17]   T. Ishihara and K. Goto, “Direct Decomposition of NO over BaO/Y2O3 Catalyst,” Catalysis Today, Vol. 164, No. 1, 2011, pp. 484-488. doi:10.1016/j.cattod.2010.12.005

[18]   K. Goto and T. Ishihara, “Direct Decomposition of NO into N2 and O2 over Ba3Y3.4Sc0.6O9,” Applied Catalysis A: General, Vol. 409-410, No. 1, 2011, pp. 66-73.doi:10.1016/j.apcata.2011.09.027

[19]   G. Adachi and N. Imanaka, “The Binary Rare Earth Oxides,” Chemical Reviews, Vol. 98, No. 4, 1998, pp. 1479- 1514. doi:10.1021/cr940055h

[20]   N. Imanaka, T. Masui and H. Masaki, “Direct Decomposition of Nitric Oxide over C-Type Cubic(Gd1–x–yYxBay)2O3–y Solid Solutions,” Advanced Materials, Vol. 19, No. 21, 2007, pp. 3660-3663. doi:10.1002/adma.200602323

[21]   H. Masaki, T. Masui and N. Imanaka, “Direct Decomposition of Nitric Oxide into Nitrogen and Oxygen over C-Type Cubic Y2O3-ZrO2 Solid Solutions,” Journal of Alloys and Compounds, Vol. 451, No. 1-2, 2008, pp. 406- 409. doi:10.1016/j.jallcom.2007.04.158

[22]   N. Imanaka and T. Masui, “Advanced Materials for Environmental Catalysts,” The Chemical Record, Vol. 9, No. 1, 2009, pp. 40-50. doi:10.1002/tcr.20167

[23]   S. Tsujimoto, K. Mima, T. Masui and N. Imanaka, “Direct Decomposition of NO on C-Type Cubic Rare Earth Oxides Based on Y2O3,” Chemistry Letters, Vol. 39, No. 5, 2010, pp. 456-457. doi:10.1246/cl.2010.456

[24]   S. Tsujimoto, X. Wang, T. Masui and N. Imanaka, “Direct Decomposition of NO into N2 and O2 on C-type Cubic Y2O3-ZrO2 and Y2O3-ZrO2-BaO,” Bulletin of the Chemical Society of Japan, Vol. 84, No. 7, 2011, pp. 807-811. doi:10.1246/bcsj.20100360

[25]   S. Tsujimoto, C. Nishimura, T. Masui and N. Imanaka, “Coexisting Gas-Resistant C-type Cubic Yb2O3-Tb4O7 Catalysts for Direct NO Decomposition,” Chemistry Letters, Vol. 40, No. 7, 2011, pp. 708-710. doi:10.1246/cl.2011.708

[26]   N. Imanaka and T. Masui, “Advances in Direct NOx Decomposition Catalysts,” Applied Catalysis A: General, Vol. 431-432, No. 1, 2012, pp. 1-8.doi:10.1016/j.apcata.2012.02.047

[27]   R. D. Shannon, “Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides,” Acta Crystallographica Section A, Vol. 32, No. 5, 1976, pp. 751-767. doi:10.1107/S0567739476001551

 
 
Top