MSA  Vol.3 No.10 , October 2012
Spectral Investigations of Kiton Red-620 Doped Polymethylmethacrylate
Abstract: Chemical modifications by incorporating organic dye molecules in polymethylmethacrylate (PMMA) matrix may open up the possibility of the development of smart materials. In the present work, Kiton red-620 laser dye is embedded in synthesized PMMA matrix by chemical doping process. The spectral investigations of Kiton red-620 doped PMMA matrix has been carried out using FTIR, UV-visible and photoluminescence spectrophotometers. FTIR study showed that the absorption band region 1800 - 1000 cm-1 becomes sharper with the concentration of dye in PMMA matrix. UV-visible and photoluminescence study showed that a slight shifting appears in the absorption spectra, emission spec- tra and intensity of emission peaks as concentration of dye increases in PMMA matrix.
Cite this paper: M. Chahar, V. Ali and S. Kumar, "Spectral Investigations of Kiton Red-620 Doped Polymethylmethacrylate," Materials Sciences and Applications, Vol. 3 No. 10, 2012, pp. 669-673. doi: 10.4236/msa.2012.310098.

[1]   F. J. Duarte, “Solid-State Multiple-Prism Grating Dye- Laser Oscillators,” Applied Optics, Vol. 33, No. 18, 1994, pp. 3857-3860. doi:10.1364/AO.33.003857

[2]   D. A. Gromov, K. M. Dyumaev, A. A. Manenkov, A. P. Maslyukov, G. A. Matyushin, V. S. Nechitalio and A. M. Prokhorov, “Efficient Plastic-Host Dye Lasers,” Journal of the Optical Society of America B, Vol. 2, No. 7, 1985, pp. 1028-1031. doi:10.1364/JOSAB.2.001028

[3]   N. K. Chaudhury, R. Gupta and S. Gulia, “Sol-Gel Technology for Sensor Applications,” Defence Science Journal, Vol. 57, No. 3, 2007, pp. 241-253.

[4]   H. Podbielska and A. Ulatowska-Jarza, “Sol-Gel Tech- nology for Biomedical Engineering,” Bulletin of the Polish Academy of Sciences Technical Sciences, Vol. 53, No. 3, 2005, pp. 261-271.

[5]   F. J. Duarte, “Organic Dye Lasers: Brief History and Re- cent Developments,” Optics and Photonics News, Vol. 14, No. 10, 2003, pp. 20-25. doi:10.1364/OPN.14.10.000020

[6]   H. Aldag, “Solid State Dye Lasers for Medical Applications,” Proceedings of SPIE, Vol. 184, 1994, p. 2115. doi:10.1117/12.172732

[7]   M. D. Rahn and T. A. King, “Comparison of Laser Per- formance of Dye Molecules in Sol-Gel Polycom Host Media,” Applied Optics, Vol. 34, No. 36, 1995, pp. 8260- 8271. doi:10.1364/AO.34.008260

[8]   R. Reisfeld, “The State of the Art of Solid State Tunable Lasers in the Visible,” Optical Materials, Vol. 4, No. 1, 1994, pp. 1-3. doi:10.1016/0925-3467(94)90048-5

[9]   R. Fan, Y. Xia and D. Chen, “Solid State Dye Lasers Based on LDS 698 Doped in Modified Polymethylmethacrylate,” Optics Express, Vol. 16, No. 13, 2008, pp. 9804-9810. doi:10.1364/OE.16.009804

[10]   S. Schultheiss, E. Yariv, R. Reisfeld and H. D. Breuer, “Solid State Dye Lasers: Rhodamines in Silica-Zirconia Materials,” Photochemical & Photobiological Sciences, Vol. 1, No. 5, 2002, pp. 320-323. doi:10.1039/b200890d

[11]   B. J. Scott, G. Wirnsberge and G. D. Stucky, “Mesoporous and Mesostructured Materials for Optical Applications,” Chemistry of Materials, Vol. 13, No. 10, 2001, pp. 3140-3150. doi:10.1021/cm0110730