JCPT  Vol.2 No.4 , October 2012
Growth and Characterization of Holmium Oxalate Heptahydrate Crystals
Single crystals of holmium oxalate heptahydrate are grown by gel diffusion method using organic agar gel as a medium of growth. The crystals grow in the agar gel with hexagonal morphology having well defined habit faces Powder X-ray diffraction results show that the crystals belong to monoclinic system bearing the space group P21/c with cell parameters; a = 12.197? , b = 11.714 , c = 6.479 , α = 90°, β = 120.12°, γ = 90°, V = 799.6? 3. Fourier transform Infrared spectrum of the crystals shows the presence of water and other associated functional groups. Thermogravimetric analysis support the presence of 7 H2O molecules associated with holmium oxalate crystal lattice. The thermal decomposition in the nitrogen atmosphere leads to the formation of holmium oxide as the final product.

Cite this paper
B. Want and F. Dar, "Growth and Characterization of Holmium Oxalate Heptahydrate Crystals," Journal of Crystallization Process and Technology, Vol. 2 No. 4, 2012, pp. 137-141. doi: 10.4236/jcpt.2012.24019.
[1]   T. J. Kane and R. L. Byer, “Monolithic, Unidirectional Single-Mode Nd:YAG Ring Lase,” Optics Letters, Vol. 10, No. 2, 1985, pp. 65-67. doi:10.1364/OL.10.000065

[2]   C. R. Ronda, T. Jüstel and J. Nikol, “Rare Earth Phosphors: Fundamentals and Application,” Journal of Alloys and Compounds, Vol. 275-277, 1998, pp. 669-676. doi:10.1016/S0925-8388(98)00416-2.

[3]   R. J. H. Voorhoeve, J.P. Remeika, P. E. Freeland and B. T. Matthias, “Rare-Earth Oxides of Manganese and Cobalt Rival Platinum for the Treatment of Carbon Monoxide in Auto Exhaust,” Science, Vol. 177, No. 4046, 1972, pp. 353-354. doi:10.1126/science.177.4046.353

[4]   M. Sagawa, S. Fujimura, N. Togawa, H. Yamamoto and Y. Matsuura, “New Material for Permanent Magnets on a Base of Nd and Fe,” Journal of Applied Physics, Vol. 55, No. 6, 1984, pp. 2083-2087. doi:10.1063/1.333572.

[5]   Y. Heesun, S. Sooyeon, A. Mostafa and P. H. Holloway, “Synthesis and Luminescent Properties of Rare EarthDoped YVO4 Nanocrystalline Powders,” Journal of Ceramic Processing Research, Vol. 8, No. 4, 2007, pp. 256-260.

[6]   E. Garskaite, M. Lindgren, M. Einarsrud and T. Grande, “Luminescent Properties of Rare Earth (Er, Yb) Doped Yttrium Aluminium Garnet Thin Films and Bulk Samples Synthesized by an Aqueous Sol-Gel Technique,” Journal of the European Ceramic Society. Vol. 30, 2010, pp. 1707-1715. doi:10.1016/j.eurceramsoc.2010.01.001

[7]   K. Meier, R. Cardoso-Gil, W. Schnelle, H. Rosner, U. Burkhardt and U. Schwarz, “Thermal, Magnetic, Electronic, and Superconducting Properties of Rare-Earth Metal Pentagermanides REGe5 (RE = La, Nd, Sm, Gd) and Synthesis of TbGe5,” Zeitschrift für Anorganische und Allgemeine Chemie, Vol. 636, No. 8, 2010, pp. 14661473. doi:10.1002/zaac.201000065 .

[8]   R. Peters, K. Petermann and G. Huber, “Growth Technology and Laser Properties of Yb-Doped Sesquioxides,” In: P. Capper and P. Rudolph, Eds., Crystal Growth Technology: Semiconductors and Dielectrics, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2010, p. 267.

[9]   A. B. Gadkaria, T. J. Shinde and P. N. Vasambekar, “Magnetic Properties of Rare Earth Ion (Sm3+) Added Nanocrystalline Mg-Cd Ferrites, Prepared by Oxalate CoPrecipitation Method” Journal of Magnetism and Magnetic Materials, Vol. 322, No. 24, 2010, pp. 38233827. doi:10.1016/j.jmmm.2010.06.021

[10]   M. A. El-F. Gabal, “Synthesis and Characterization of Nanocrystalline PbTiO3,” Industrial & Engineering Chemistry Research, Vol. 50, No. 24, 2011, pp. 13771-13777. DOI: 10.1021/ie202255g

[11]   J. Blanusa, N. Jovic, T. Dzomic, B. Antic, A. Kremenovic, M. Mitric and V. Spasojevic, “Magnetic Susceptibility and Ordering of Yb and Er in Phosphors Yb, Er: Lu2O3,” Optical Materials, Vol. 30, 2008, pp. 1153-1156. doi:10.1016/j.optmat.2007.05.039

[12]   S. Sato, R. Takahashi, M. Kobune and H. Gotoh, “Basic Properties of Rare-Earth Oxide,” Applied Catalysis A: General, Vol. 356, No. 1, 2009, pp. 57-63. doi:10.1016/j.apcata.2008.12.019.

[13]   M. A. Gabal, S. A. Hameed and A. Y. Obaid, “CoTiO3 via Cobalt Oxalate-TiO2 Precursor. Synthesis and Characterization,” Materials Characterization, Vol. 71, 2012, pp. 87-94. doi:10.1016/j.matchar.2012.06.009

[14]   C. Artini, G. A. Costa and R. Masini, “Study of the Formation Temperature of Mixed LaREO3 (RE≡Dy, Ho, Er, Tm, Yb, Lu) and NdGdO3 Oxides,” Journal of Thermal Analysis and Calorimetry, Vol. 103, No. 1, 2011, pp. 1721. doI:10.1007/s10973-010-0973-8

[15]   K. Liua, G. Jia, Y. Zheng, Y. Song, M. Yang, Y. Huang, L. Zhang and H. You , “Room-Temperature Synthesis and Luminescence Properties of Eu3+/Tb3+-Doped La(1, 3,5-BTC)(H2O)6,” Inorganic Chemistry Communications, Vol. 12, 2009, pp. 1246-1249. doi:10.1016/j.inoche.2009.09.033

[16]   P. K. Gallagher, F. Schrey and Prescott, “Study of the Thermal Decomposition of Europium(III) Oxalate Using the Moessbauer Effect,” Inorganic Chemistry, Vol. 9, 1970, pp. 215-219. doi:10.1021/ic50084a004

[17]   B. Want, “Single Crystal Growth and Characterization of Lanthanum-Neodymium Oxalate Octahydrate,” Journal of Crystal Growth, Vol. 335, No. 1, 2011, pp. 90-93. doi:10.1016/j.jcrysgro.2011.08.020.

[18]   M. V. John and M. A. Ittyachen, “Growth and Characterization of Mixed Cerium Lanthanum Oxalate Decahydrate Crystals in Silica Gel,” Crystal Research and Technology, Vol. 36, 2001, pp. 141-146. doi:10.1002/1521-4079(200102)36:2<141::AID-CRAT141>3.0.CO;2-0

[19]   A. M. E. Raj, D. D. Jayanthi, V. B. Jothy, M. Jayachandran and C. Sanjeeviraja, “Growth Aspects of Barium Oxalate Monohydrate Single Crystals in Gel Medium,” Crystal Research and Technology, Vol. 43, No. 12, 2008, pp. 1307-1313. doi:10.1002/crat.200800038

[20]   C. Joseph, G. Varughese and M. A. Ittyachen, “Growth and Characterization of Mixed Neodymium Praseodymium Oxalate Decahydrate Crystals in Silica Gel,” Crystal Research and Technology, Vol. 30, No. 2, 1995, pp. 159164. doi:10.1002/crat.2170300203.

[21]   G. Varghese, M. A. Ittyachen and J. Issac, “Studies on La1–xCux?3C2O4?nH2O Crystals Grown in Hydro-Silica Gel,” Crystal Research and Technology, Vol. 25, No. 7, 1990, pp. 153-159. doi:10.1002/crat.2170250722,

[22]   I. Korah, C. Joseph and Ittyachan, “Growth and Characterisation of Gadolinium Samarium Oxalate Single Crystals,” Crystal Research and Technology, Vol. 42, No. 10, 2007, pp. 939-942. doi:10.1002/crat.200710962.

[23]   H. K. Henisch, “Crystals in Gels and Liesegang Rings,” Cambridge University Press, Cambridge, 1988.

[24]   A. Boultif and D. Louer, “Powder Pattern Indexing with the Dichotomy Method,” Journal of Applied Crystallography, Vol. 37, No. 5, 2004, pp. 724-773. doi:10.1107/S0021889804014876.

[25]   B. A. A. Balboul, “Thermal Decomposition Study of Erbium Oxalate Hexahydrate,” Thermochimica Acta, Vol. 351, No. 1, 2000, pp. 55-60. doi:10.1016/S0040-6031(00)00353-1

[26]   K. Nakamoto, “Infra Red and Raman Spectra of Inorganic and Coordination Compounds,” 6th Edition, John-Wiley & Sons, Hoboken, 2009, pp. 766-773.

[27]   G. Socrates, “Infrared and Raman Characteristic Group Frequencies: Table and Charts,” 3rd Edition, John Wiley & Sons Inc., New York, 2004, p. 287.

[28]   J. Fujita, A. E. Martell and K. Nakamoto, “Infrared Spectra of Metal Chelate Compounds. VI. A Normal Coordinate Treatment of Oxalato Metal Complexes,” Journal of Chemical Physics, Vol. 36, No. 2, 1962, pp. 324-332. doi:10.1063/1.173250.

[29]   J. R. Ferraro, “Low Frequency Vibrations of Inorganic and Co-ordination Com?pounds,” Plenum Press, New York, 1971.