IJOC  Vol.2 No.3 A , November 2012
SO42-/SnO2-Catalyzed C3-alkylation of 4-hydroxycoumarin with secondary benzyl alcohols and O-alkylation with O-acetyl compounds
Abstract: Sulfated tin oxide (STO) has been found to be an efficient reusable solid superacid catalyst for C3-alkylation and O-alkylation of 4-hydroxycoumarins with benzylic, allylic alcohols/and corresponding acetates respectively, in acetic acid under reflux conditions with good yield of products.
Cite this paper: V. Narayana, R. Varala and P. Zubaidha, "SO42-/SnO2-Catalyzed C3-alkylation of 4-hydroxycoumarin with secondary benzyl alcohols and O-alkylation with O-acetyl compounds," International Journal of Organic Chemistry, Vol. 2 No. 3, 2012, pp. 287-294. doi: 10.4236/ijoc.2012.223039.

[1]   R. D. H. Murray, J. Mendez and S. A. Brown, “The Natural Coumarins: Occurrence, Chemistry, and Biochemistry,” Wiley, New York, 1982.

[2]   B. Naser-Hijazi, B. Stolze and K. S. Zanker, “Second Proceedings of the International Society of Coumarin Investigators,” Springer, Berlin, 1994.

[3]   C. Spino, M. Dodier and S. Sotheeswaran, “Anti-HIV Coumarins from Calophyllum Seed Oil,” Bioorganic & Medicinal Chemistry Letters, Vol. 8, No. 24, 1998, pp. 3475- 3478. doi:10.1016/S0960-894X(98)00628-3

[4]   A. Murakami, G. Gao, M. Omura, M. Yano, C. Ito, H. Furukawa, D. Takahashi, K. Koshimizu and H. Ohigashi, “1,1-Dimethylallylcoumarins Potently Supress both Lipo- polysaccharide- and Interfer-on-γ-Induced Nitric Oxide Generation in Mouse Macrophage RAW 264.7 Cells,” Bioorganic & Medicinal Chemistry Letters, Vol. 10, No. 1, 2000, pp. 59-62. doi:10.1016/S0960-894X(99)00578-8

[5]   Y. Xia, Z.-Y. Yang, P. Xia, T. Hackl, E. Hamel, A. Mauger, J.-H. Wu and K.-H. Lee, “Antitumor Agents. 211. Fluorinated 2-Phenyl-4-Quinolone Derivatives as Antimi- totic Antitumor Agents,” Journal of Medicinal Chemistry, Vol. 44, No. 23, 2001, pp. 3932-3936. doi:10.1021/jm0101085

[6]   M. Itoigawa, C. Ito, H. T.-W. Tan, M. Kuchide, H. To-kuda, H. Nishino and H. Furukawa, “Cancer Chemopreventive Agents, 4-Phenylcoumarins from Calophyllum inophyllum,” Cancer Letters, Vol. 169, No. 1, 2001, pp. 15-19. doi:10.1016/S0304-3835(01)00521-3

[7]   T. Yamaguchi, T. Fukuda, F. Ishibashi and M. Iwao, “The First Total Synthesis of Lamellarin α 20-Sulfate, a Selective Inhibitor of HIV-1 Integrase,” Tetrahedron Letters, 2006, Vol. 47, No. 22, pp. 3755-3757. doi:10.1016/j.tetlet.2006.03.121

[8]   Y. Yamamoto and M. Kurazono, “A New Class of Anti-MRSA and Anti-VRE Agents: Preparation and Antibac- terial Activities of Indole-Containing Compounds,” Bioorganic Medicinal Chemistry Letters, Vol. 17, No. 6, 2007, pp. 1626-1628. doi:10.1016/j.bmcl.2006.12.081

[9]   I. Manolov and N. D Danchev, “Synthesis and Pharma- cological Investigations of Some 4-Hydroxycoumarin Derivatives,” Archiv der Pharmzie, Vol. 336, No. 2, 2003, pp. 83-94. doi:10.1002/ardp.200390010

[10]   Z. Ivezic and M. Trkovnik, “Products of Condensations of Hydroxycoumarin Derivatives with Aromatic and Aliphatic Dialdehydes, Their Preparation and Antiviral Ac- tion Thereof,” Pliva Pharm & Chem Works, No. WO 2003029237, 2003,

[11]   A. Estévez-Braun and A. G. González, “Coumarins,” Natural Product Reports, Vol. 14, No. 5, 1997, pp. 465- 475. doi:10.1039/np9971400465

[12]   A. Clerici and O. Porta, “A Novel Synthesis of 4-Hydro- xy-3-Phenylcoumarins by Titanum(III)-Mediated Reduc- tive C-C Bond Formation,” Synthesis, Vol. 1993, No. 1, 1993, pp. 99-102. doi:10.1055/s-1993-25808

[13]   T. Mizuno, I. Nishiguchi, T. Hirashima, A. Ogawa, N. Kambe and N. Sonoda, “Facile Synthesis of 4-Hydroxy-coumarins by Sulfur-Assisted Carbonylation of 2’-Hydroxyacetophenones with Carbon Monoxide,” Synthesis, Vol. 1988, No. 3, 1988, pp. 257-258. doi:10.1055/s-1988-27537

[14]   S. Wang, G. W. A. Milne, X. Yan, I. J. Posey, M. C. Nicklaus, L. Graham and W. G. Rice, “Discovery of Novel, Non-Peptide HIV-1 Protease Inhibitors by Pharmacophore Searching,” Journal of Medicinal Chemistry, Vol. 39, No. 10, 1996, pp. 2047-2054. doi:10.1021/jm950874+

[15]   D. U. Chen, P. Y. Kuo and D. Y. Yang, “Design and Synthesis of Novel Diphenacoum-Derived, Conformation-Restricted Vitamin K 2,3-Epoxide Reductase Inhibitors,” Bioorganic Medicinal Chemistry Letters, Vol. 15, No. 10, 2005, pp. 2665-2668. doi:10.1016/j.bmcl.2005.03.005

[16]   J. Kischel, D. Michalic, A. Zapf and M. Beller, “FeCl3- Catalyzed Addition of 1,3-Dicarbonyl Compounds to Aromatic Olefins,” Chemistry-Asian Journal, Vol. 2, No. 7, 2007, pp. 909-914. doi:10.1002/asia.200700055

[17]   ] J. Xie, L. Yue, W. Chen, W. Du, J. Zhu, J. Deng and Y. Chen, “Highly Enantioselective Michael Addition of Cyclic 1,3-Dicarbonyl Compounds to α, β-Unsaturated Ketones,” Organic Letters, Vol. 9, No. 3, 2007, pp. 413-415. doi:10.1021/ol062718a

[18]   M. I. Naumov, S. A. Sutirin, A. S. Shavyrin, O. G. Ganina, I. P. Beletskaya, V. B. Rey, S. Combes, J. P. Finet and A. Y. Fedorov, “Cascade Synthesis of Polyoxygen- ated 6H,11H-[2]Benzopyrano-[4,3-c][1]benzopyran-11- ones,” Journal of Organic Chemistry, 2007, Vol. 72, No. 9, pp. 3293-3301. doi:10.1021/jo062592v

[19]   G. Toth, S. Moinar, T. Tamas and I. Borbely, “A Simple Procedure for the Alkylation of 4-Hydroxycoumarins at C-3 Position,” Organic Preparation & Procedures Inter- national, 1999, Vol. 31, No. 2, pp. 222-225. doi:10.1080/00304949909355718

[20]   E. Enders, “Kondensation von 4-Oxycumarin mit Diaryl- und Ar-yl-Alkyl-Carbinolen,” Angewandte Chemie, Vol. 69, No. 13-14, 1957, p. 481. doi:10.1002/ange.19570691318

[21]   R. Ziegler, “Zur Chemie des 4-Hydroxy-Cumarins VIII. Mitteilung: Eine Synthese blutgerinnunghemmender Stoffe,” Monatshefte für Chemie, Vol. 88, No. 1, 1957, p. 25. doi:10.1007/BF01075426

[22]   V. K. Ahluvalia, K. K. Arora and I. Mukherjee, Indian Journal of Chemistry, Section B, Vol. 24B, 1985, p. 298.

[23]   W. Huang, J. Wang, Q. Shen and X. Zhou, “Yb(OTf)3- Catalyzed Propargylation and Allenylation of 1,3-Dicar- bonyl Derivatives with Propargylic Alcohols: One-Pot Synthesis of Multi-Substituted Furocoumarin,” Tetrahedron, Vol. 63, No. 47, 2007, pp. 11636-11643. doi:10.1016/j.tet.2007.08.114

[24]   J. KischelJ, K. Mertins, D. Michalik, A. Zapf and M. Beller, “A General and Efficient Iron-Catalyzed Benzylation of 1,3-Dicarbonyl Compounds,” Advanced Synthesis Catalysis, Vol. 349, No. 6, 2007, pp. 865-870. doi:10.1002/adsc.200600497

[25]   C. R. Reddy, B. Srikanth, R. Narsimha and D. S. Shin, “Solid-Supported Acid-Catalyzed C3-Alkylation of 4- Hydroxycoumarins with Secondary Benzyl Alcohols: Access to 3,4-Disubstituted Coumarins via Pd-Coupling,” Tetrahedron, 2008, Vol. 64, No. 51, pp. 11666-11672. doi:10.1016/j.tet.2008.10.017

[26]   X. Lin, X. Dai, Z. Mao and Y. Wang, “Molecular Iodine- Catalyzed C3-Alkylation of 4-Hydroxycoumarins with Secondary Benzyl Alcohols,” Tet-rahedron, Vol. 65, No. 45, 2009, pp. 9233-9237. doi:10.1016/j.tet.2009.09.007

[27]   R. Rueping, B. J. Nachtsheim and E. Sugiono, “Direct Catalytic Benzylation of Hydroxycoumarin-Efficient Synthesis of Warfarin Derivatives and Analogues,” Synlett, Vol. 2010, No. 10, 2010, pp. 1549-1553. doi:10.1055/s-0029-1219936

[28]   P. Thirupathi and S. S. Kim, “Fe(ClO4)3?xH2O-Catalyzed direct C-C Bond Forming Reactions between Secondary Benzylic Alcohols with Different Types of Nucleo- philes,’’ Tetrahedron, Vol. 66, No. 16, 2010, pp. 2995- 3003. doi:10.1016/j.tet.2010.02.063

[29]   P. Theerthagiri and A. Lalitha, “Benzylation of β-Dicer- bonyl Compounds and 4-Hydroxycoumarin Using TMSOTf Catalyst: A Simple, Mild, and Efficient Method,” Tetrahedron Letters, Vol. 51, No. 41, 2010, pp. 5454-5458. doi:10.1016/j.tetlet.2010.08.019

[30]   G. Aridoss and K. K. Laali, “Condensation of Propargylic Alcohols with 1,3-Dicarbonyl Compounds and 4-Hy- droxycoumarins in Ionic Liquids (ILs),” Tetrahedron Letters, 2011, Vol. 52, No. 51, pp. 6859-6864. doi:10.1016/j.tetlet.2011.10.021

[31]   P. N. Chatterjee and S. Roy, “Alkylation of 1,3-Dicarbonyl Compounds with Benzylic and Propargylic Alcohols Using Ir-Sn Bimetallic Catalyst: Synthesis of Fully Decorated Furans and Pyrroles,” Tetrahedron, 2011, Vol. 67, No. 25, pp. 4569-4577.

[32]   X. Bokhimi, A. Morales, E. Ortiz, T. Lopez, R. Gomez and J. Navarrete, “Sulfate Ions in Titania Polymorphs,” Journal of Sol-Gel Science Technology, Vol. 29, No. 1, 2004, pp. 31-40. doi:10.1023/B:JSST.0000016135.02238.0e

[33]   F. Lonyi, J. Valyon, J. Engelhardt and F. Mizukami, “Characterization and Catalytic Properties of Sulfated ZrO2-TiO2Mixed Oxides,” Journal of Catalysis, 1996, Vol. 160, No. 2, pp. 279-289. doi:10.1006/jcat.1996.0146

[34]   J. Deutsch, H. A. Prescott, D. Müller, E. Kemnitz and H. Lieske, “Acylation of Naphthalenes and Anthracene on Sulfated Zirconia,” Journal of Catalysis, Vol. 231, No. 2, 2005, pp. 269-278. doi:10.1016/j.jcat.2005.01.024

[35]   M. V. Luzgin, K. Thomas, J. Gestel, J. P. Gilson and A. G. Stepanov, “Propane Carbonylation on Sulfated Zirconia Catalyst as Studied by 13C MAS NMR and FTIR Spectroscopy,” Journal of Catalysis, Vol. 223, No. 2, 2004, pp. 290-295.

[36]   H. Ma, J. Xiao and B. Wang, “Environmentally Friendly Efficient Coupling of n-Heptane by Sulfated Tri-Component Metal Oxides in Slurry Bubble Column Reactor,” Journal of Hazardous Materials, Vol. 166, No. 2-3, 2009, pp. 860-865. doi:10.1016/j.jhazmat.2008.11.096

[37]   D. Zhai, Y. Nie, Y. Yue, H. He, W. Hua and Z. Gao, “Esterification and Transesterification on Fe2O3-Doped Sulfated Tin Oxide Cata-lysts,” Catalysis Communications, Vol. 12, No. 7, 2011, pp. 593-596. doi:10.1016/j.catcom.2010.12.020

[38]   C. P. Nicholas and T. J. Marks, “Sulfated Tin Oxide Nanoparticles as Supports for Molecule-Based Olefin Polymerization Catalysts,” Nano Letters, Vol. 4, No. 8, 2004, pp. 1557-1559. doi:10.1021/nl049255r

[39]   H. Matsuhashi, H. Miyazaki, Y. Kawamura, H. Nakamura and K. Arata, “Preparation of a Solid Superacid of Sul- fated Tin Oxide with Acidity Higher Than That of Sul- fated Zirconia and Its Applications to Aldol Condensation and Benzoylation,” Chemistry of Materials, Vol. 13, No. 9, 2001, pp. 3038-3042. doi:10.1021/cm0104553

[40]   M. K. Lam, K. T. Lee and A. R. Mohamed, “Application of Sulfated tin oxide in Transesterification of Waste Cooking Oil: An Optimization Study,” Applied Catalysis B: Environmental, Vol. 93, No. 1-2, pp. 134-139.

[41]   H. Matsuhashi, T. Tanaka and K. Arata, “Measurement of Heat of Argon Adsorption for the Evaluation of Relative Acid Strength of Some Sulfated Metal Oxides and H- Type Zeolites,” Journal of Physical Chemistry B, Vol. 105, No. 40, 2001, pp. 9669-9671. doi:10.1021/jp0118017

[42]   S. R. Sarda, V. A. Puri, A. B. Rode, T. N. Dalawe, W. N. Jadhav and R. P. Pawar, “Sulfated Tin Oxides: A Suitable Reagent for Synthesis of 2,4-Diphenyl-4,6,7,8-tetrahy- drochromen-5-one,” Arkivoc, Vol. 2007, No. xvi, 2007, pp. 246-251.

[43]   M. A. Naik, B. G. Mishra, A. Dubey and G. D. Hota, “Catalytic Applications of Sulfated Tin Oxide for Synthesis of Structurally Diverse β-Acetamido Ketones and Aryl-14H-Dibenzo[a.j]Xanthenes,” Bulletin of Catalysis Society of India, Vol. 8, No. 1, 2009, pp. 35-40.

[44]   M. Sowmiya, A. Sharma, A. Parsodkar, B. G. Mishra and A. Dubey, “Nanosized Sulfated SnO2 Dispersed in the Micropores of Al-Pillared Clay As an Efficient Catalyst for the Synthesis of Some Biologically Important Mole- cules,’’ Applied Catalysis A, Vol. 333, No. 2, 2007, pp. 272-280. doi:10.1016/j.apcata.2007.09.024

[45]   S. P. Chavan, P. K. Zubaidha, S. W. Dantale, A. Kesavaraja, A. V. Ramaswamy and T. Ravindranathan, “Use of Solid Superacid (Sulphated SnO2) as Efficient Catalyst in Facile Transesterification of Ketoesters,” Tetrahedron, Vol. 37, No. 2, 1996, pp. 233-236. doi:10.1016/0040-4039(95)02136-1

[46]   Q. Lu, W.-M. Xiong, W. Z. Li, Q. X. Guo and X. F. Zhu, “Catalytic Pyrolysis of Cellulose with Sulfated Metal Oxides: A Promising Method for Obtaining High Yield of Light Furan Compounds,” Bioresource Technology, Vol. 100, No. 20, 2009, pp. 4871-4876. doi:10.1016/j.biortech.2009.04.068

[47]   Y. Du, S. S. Liu, Y. Zhang, C. Yin, Y. Di and F.-S. Xiao, “Mesostructured Sulfated Tin Oxide and its High Catalytic Activity in Esterification and Friedel-Crafts Acyla- tion,” Catalysis Letters, Vol. 108, No. 3-4, 2006, pp. 155-158. doi:10.1007/s10562-006-0037-7

[48]   S. Furuta, H. Matsuhashi and K. Arata, “Catalytic Action of Sul-fated Tin Oxide for Etherification and Esterification in Com-parison with Sulfated Zirconia,” Applied Catalysis A: General, Vol. 269, No. 1-2, 2004, pp. 187-191. doi:10.1016/j.apcata.2004.04.017

[49]   J. I. Moreno, R. James, R. Gómez and M. E. Ni?o- Gómez, “Evaluation of Sulfated Tin Oxides in the Esteri- fication Reaction of Free Fatty Acids,” Catalysis Today, Vol. 172, No. 1, 2011, pp. 34-40. doi:10.1016/j.cattod.2011.03.052

[50]   S. A. Dake, M. B. Khedkar, G. S. Irmale, S. J. Ukalgaon- kar, V. V. Thorat, S. A. Shintre and R. P. Pawar, “Sulfated Tin Oxide: A Reusable and Highly Efficient Het- erogeneous Catalyst for the Synthesis of 2,4,5-Triaryl-1H-imida-zole Derivatives,” Synthetic Communi-cations, Vol. 42, No. 10, 2012, pp. 1509-1520. doi:10.1080/00397911.2010.541744

[51]   V. B. C. Figueira, A. G. Esqué, R. Varala, C. González- Bello, S. Prabhakar and A. M. Lobo, “Functional Desymmetrization of 1,3-Dioximes for the Obtention of 1,2,3- Hetero Trisubstituted Carbocycles,” Tetrahedron Letters, Vol. 51, No. 15, 2010, pp. 2029-2031. doi:10.1016/j.tetlet.2010.02.048

[52]   R. Varala, E. Ramu and S. R. Adapa, “Ruthenium (III) Chloride-Catalyzed Efficient Proto-col for Ethyl Diazoacetate Insertion into the N-H Bond of Secondary Amines,” Monatshefte für Chemie, Vol. 139, No. 11, 2008, pp. 1369- 1372. doi:10.1007/s00706-008-0927-z

[53]   R. Enugala, S. Nuvvula, V. Kotra, R. Varala and S. R. Adapa, “Green Approach for the Efficient Synthesis of Quinolines Promoted by Citric Acid,” Heterocycles, Vol. 75, No. 10, 2008, pp. 2523-2533. doi:10.3987/COM-08-11405

[54]   E. Ramu, R. Varala, N. Sreelatha and S. R. Adapa, “Zn- Zn(OAc)2?2H2O: A Versatile Catalyst for the One-Pot Synthesis of Propargylamines,” Tetra-hedron Letters, Vol. 48, No. 40, 2007, pp. 7184-7190. doi:10.1016/j.tetlet.2007.07.196

[55]   R. Varala, A. Nasreen, E. Ramu and S. R. Adapa, “L- Proline Catalyzed Selective Syn-thesis of 2-Aryl-1-Arylmethyl-1H-Benzimidazoles,” Tetrahe-dron Letters, Vol. 48, No. 40, 2007, pp. 6972-6976. doi:10.1016/j.tetlet.2006.11.010

[56]   R. Varala, E. Ramu and S. R. Adapa, “Efficient and Rapid Friedlander Synthesis of Functionalized Quinolines Catalyzed by Neodymium (III) Nitrate Hexahydrate,” Synthesis, Vol. 2006, No. 22, 2006, pp. 3825-3830.

[57]   R. Varala, E. Ramu, N. Sreelatha and S. R. Adapa, “Ceric Ammonium Nitrate (CAN) Promoted Efficient Synthesis of 1,5-Benzodiazepine Derivatives,” Synlett, Vol. 2006, No. 7, 2006, pp.1009-1014.

[58]   J. Reisch, “Die Darstellung von Antikoagulantien vom Typ des Warfarin? durch Kondensation von Alkinolen mit 4-Hydroxycumarin,” Archiv der Pharmazie, Vol. 299, No. 9, 1966, pp. 806-808. doi:10.1002/ardp.19662990913

[59]   Y. Acquot, B. Refouvelet, L. Bermont, G. L. Adessi, G. Leclercq and A. Xicluna, “Syn-thesis and Cytotoxic Ac- tivity of New 2,4-Diaryl-4H,5H-pyrano[3,2-c]benzopy- ran-5-ones on MCF-7 Cells,”Pharmazie, Vol. 57, No. 4, 2002, p. 233.

[60]   G. Ap-pendino, G. Cravotto, L. Toma, R. Annunziata and G. Palmisano, “The Chemistry of Coumarin Derivatives. Part VI. Diels-Alder Trapping of 3-Methylene-2,4-chromandione. A New Entry to Substituted Pyrano[3,2-c] cou- marins,” Journal of Organic Chemistry, Vol. 59, No. 19, 1994, pp. 5556- 5564.