Back
 OPJ  Vol.2 No.3 A , September 2012
Wave Transmission in Dispersive Si-Based One Dimensional Photonic Crystal
Abstract: Transmission of electromagnetic waves through a Si-based one dimensional photonic crystal has been investigated. The proposed structure works as an omni-directional reflector for a certain range of wavelength for an angle of incidence up to 55?. The structure works as a narrow band TM-polarization filter for an angle of incidence more than 55?, i.e. a filter which completely blocks TE-polarized waves but allows certain wavelengths of TM-polarized waves. But at an angle of incidence of 89?, the structure works as a multiple narrow band TM-polarization filter even though no defect layer is introduced inside the structure. It is also found that this multiple narrow pass-bands of TM-polarized waves can be tuned to a desired range of wavelength by changing the temperature of the structure.
Cite this paper: V. Kumar, B. Suthar, A. Kumar, V. Kumar, K. Singh, A. Bhargva and S. Ojha, "Wave Transmission in Dispersive Si-Based One Dimensional Photonic Crystal," Optics and Photonics Journal, Vol. 2 No. 3, 2012, pp. 237-241. doi: 10.4236/opj.2012.223036.
References

[1]   Yablonovitch, E.: Inhibited spontaneous emission in solid-state physics and electronics, Phys. Rev. Lett. 58, 2059 (1987). doi:10.1103/PhysRevLett.58.2059

[2]   Ho, K.M., Chan, C.T. and Soukoulis, C.M.: Existence of a photonic gap in periodic dielectric structures, Phys. Rev. Lett., 65, 3152 (1990). doi:10.1103/PhysRevLett.65.3152

[3]   Joannopoulos, J. D., Villeneuve, P. and Fan, S.: Photonic crystals: Putting a new twist on light, Nature, 386, 143 (1997). doi:10.1038/386143a0

[4]   Rojas, J.A.M., Alpuente, J., Pineiro, J. and Sanchez, R.: Rigorous full vectorial analysis of electromagnetic wave propagation in 1d inhomogeneous media, Progress in Electromagnetics Research, PIER 63, 89 (2006). doi:10.2528/PIER06042501

[5]   Yablonovitch, E. and Gmitter, T.J.: Photonic band structure: The face-centered-cubic case, Phys. Rev. Lett., 63, 1950 (1989). doi:10.1103/PhysRevLett.63.1950

[6]   Joannopoulos, J.D., Meade, R.D. and Winn, J.N.: Photonic Crystals: Molding the Flow of Light, Princeton Univ. Press, Princeton, NJ (1995).

[7]   Burstein, E. and Weisbuch, C.: Confined Electron and Photon: New Physics and Applications, Plenum Press, New York (1995). doi:10.1007/978-1-4615-1963-8

[8]   Soukoulis, C. M.: Photonic Band Gap Materials, Kluwer Academic, Dordrecht (1996). doi:10.1007/978-94-009-1665-4

[9]   Dowling, J. P.: Mirror on the wall: You're omnidirectional after all?, Science 282, 1841 (1998). doi:10.1126/science.282.5395.1841

[10]   Yablonovitch, E.: Engineered omnidirectional external-reflectivity spectra from one-dimensional layered interference filters, Opt. Lett. 23, 1648 (1998). doi:10.1364/OL.23.001648

[11]   Chigrin, D. N., Lavrinenko, A. V., Yarotsky, D. A., Aponenko, S. V.: Observation of total omnidirectional reflection from a one dimensional dielectric lattice, Appl. Phys. A: Mater. Sci. Process. 68, 25 (1999). doi:10.1007/s003390050849

[12]   Suthar, B., Kumar, V., Singh, Kh.S., Bhargava, A.: Tuning of photonic band gaps in one dimensional chalcogenide based photonic crystal, Opt. Commun. 285, 1505 (2012). doi:10.1016/j.optcom.2011.10.047

[13]   Kumar, V., Singh, Kh. S., Singh, S. K. and Ojha, S. P.: Broadening of omnidirectional photonic band gap in si-based one dimensional photonic crystals, PIER M 14, 101 (2010). doi:10.2528/PIERM10062807

[14]   Bermann, O. L., Lozovik, Y. E., Eiderman, S. L., Coalson, R. D.: Superconducting photonic crystals: Numerical calculations of the band structure, Phys. Rev. B 74, 092505 (2006). doi:10.1103/PhysRevB.74.092505

[15]   Takeda, H., Yoshino, K.: Tunable photonic band schemes in two-dimensional photonic crystals composed of copper oxide high-temperature superconductors, Phys. Rev. B 67, 245109 (2005). doi:10.1103/PhysRevB.67.245109

[16]   Lin, W.-H., Wu, C.-J., Yang, T.-J., Chang, S.-J.: Terahertz multichanneled filter in a superconducting photonic crystal, Optics Express 18, 27155 (2010). doi:10.1364/OE.18.027155

[17]   Chen, M.-S., Wu, C.-J. and Yang, T.-J.: Investigation of optical properties in near-zero-permittivity operation range for a superconducting photonic crystal, Appl. Phys. A 104, 913 (2011). doi:10.1007/s00339-011-6439-4

[18]   Li, H. H.: Refractive index of silicon and germanium and its wavelength and temperature derivatives, J. Phys. Chem. Ref. Data 9, 561 (1980). doi:10.1063/1.555624

[19]   Yeh, P.: Optical Waves in Layered Media, John Wiley and Sons, New York (1988).

[20]   Ghosh, G.: Handbook of thermo-optic coefficients of optical materials with applications, Academic Press, New York (1985).

[21]   Awasthi, S. K., Mishra, A., Malaviya, U. and Ojha, S. P.: Wave propagation in a one-dimensional photonic crystal with metamaterial, Solid State Commun. 149, 1379 (2009). doi:10.1016/j.ssc.2009.05.017

 
 
Top