JASMI  Vol.2 No.3 , September 2012
Contribution to the Design of a Pottery Kiln Using as Fuel a Mixture of Cellulosic and Plastic Materials: Influence of the Proportion of Plastic on the Emissions of NO, CO2, O2
ABSTRACT
This paper concerns the study of the influence of the proportion of plastic from polyethylene, on the yields of gas emissions during the combustion of the mixture of “millet stalks and polyethylene plastic bags”, in a prototype of kiln of potters. During these investigations, we looked at the rate of residual oxygen (O2) and emissions of carbon dioxide (CO2) and nitrogen monoxide (NO), as a function of primary air flow (Q1) and secondary airflow (Q2). The potter’s kilns are considered those fueled by natural air flow. The primary air flows ranging from 45 to 85 Nm3?h 1 and secondary air flows from 20 to 60 Nm3?h 1. To conduct this numerical study, the model used is “reactor” based on the code CHEMKIN II. The modeled area is composed into a multitude of perfectly stirred reactors (PSR) and the kinetic model has 893 species and 113 reversible chemical reactions. The results show that in our test conditions, the increasing of the rate of plastic in the mixture produces a decrease of the residual oxygen content, due to higher oxygen consumption regardless of the airflow. The CO2 emissions are an increasing function of the rate of plastic (polyethylene) in the fuel mixture. Finally, NO emissions are increasing functions of the mass of plastic for a proportions less than or equal to 20%, and are essentially controlled by the temperature of the reactional medium.

Cite this paper
S. Ouiminga, T. Rogaume, A. Dissa, S. Ouoba, T. Daho and J. Koulidiati, "Contribution to the Design of a Pottery Kiln Using as Fuel a Mixture of Cellulosic and Plastic Materials: Influence of the Proportion of Plastic on the Emissions of NO, CO2, O2," Journal of Analytical Sciences, Methods and Instrumentation, Vol. 2 No. 3, 2012, pp. 176-186. doi: 10.4236/jasmi.2012.23028.
References
[1]   [1] A. Ouedraogo, F. P. Kieno, T. Daho, J. D. Bathiebo and R. Ouedraogo, “Bilan Thermique Quasi Statique D’un Four Artisanal En Argile,” Article Publié au Journal de la Société Ouest-Africaine de Chimie (SOACHIM), Vol. 24, 2007, pp. 65-72.

[2]   C. Feller and F. Ganry, “Décomposition et Humification des Résidus Végétaux Dans un Agro-Système Tropical,” Agronomie Tropicale, Vol. 3, 1982, pp. 25-36.

[3]   A. Y. Levendis and T. Ponagiotou, “Experimental Techniques to Study the Combustion Characteristics of Two Commonly Found in Municipal Wastes,” Municipal Waste Combustion, 15-19 April 1991, pp. 73-86.

[4]   F. E. Mark and R. Martin, “Energy Recovery—Recovery of Plastics in Municipal Solid Wastes,” Association of Plastics Manufactures in Europe, 1995。

[5]   J. F. Lebourg, V. Maupin and D. Rousseau, “La Combustion des Matières Plastiques,” Ecole Supérieure d’Ingénieurs de Poitiers, T. E. N. 3, 1993-1994.

[6]   R. J. Kee, F. M. Rupley and J. A. Miller, “Chemkin-II: A Fortran Chemical Kinetics Package for the Analysis of Gas-Phase Chemical Kinetics,” Sandia Report, No. 89-8009B, 1989.

[7]   T. Rogaume, M. Auzanneau, F. Jabouille, J. C. Goudeau and J. L. TORERO, “Computational Model to Investigate the Effect of Different Airflows on the Formation of Pollutants during Waste Incineration,” Combustion Science and Technology, Vol. 175, 2003, pp. 1501-1533. doi:10.1080/00102200302355

[8]   T. Rogaume, F. Richard, F. Jabouille and J. L. Torero, “Computational Model to Investigate the Mechanisms of NOx Formation during Waste Incineration,” Combustion Science and Technology, Vol. 176, No. 5-6, 2004, pp. 925-943. doi:10.1080/00102200490428549

[9]   F. Richard, T. Rogaume, A. T. Barhe, S. K. Ouiminga, J. L. Torero and P. Rousseaux, “Influence of the Regime of Combustion on Chemical Pathways of NOx Formation during Incineration of Cellulosic and Plastic Materials,” Mediteranean Symposium on Combustion, Monastir, 9-13 September 2007.

[10]   T. Rogaume, “Caractérisation Expérimentale et Modélisation de L’émission de Polluants Lors de L’incinération des Déchets Ménagers,” Thèse de Doctorat de l’université de Poitiers, Poitiers, 2001.

[11]   P. Glarborg, J. A. Miller and R. J. Kee, “Kinetic Modelling and Sensitive Analysis of Nitrogen Oxide Formation in Well Stirred Reactors,” Combustion and Flame, Vol. 65, 1986, pp. 177-202. doi:10.1016/0010-2180(86)90018-0

[12]   P. Dagaut, J. Luche and M. Cathonnet, “The Kinetics of C1 to C4 Hydrocarbons-NO Interactions in Relation with Reburning,” 28th International Symposium on Combustion, The Combustion Institute, Pittsburgh, 2000, pp. 2459-2466.

[13]   T. Daho, “Bilan Thermique Quasi-Statique et Optimisation du Rendement d’un Four Artisanal,” Dipl?me d’Etudes Approfondies de l’Université de Ouagadougou, Ouagadougou, 2004.

[14]   S. K. Ouiminga, T. Rogaume, G. B. Segda, M. Sougoti and J. Koulidiati, “Combustion de Granulés de Polyéthylène Pur et de Sachets Plastiques à Base de Polyéthylène: Effet de la Masse et de la Température sur les Emissions de NO, CO2 et O2,” Journal de la Société Ouest-Africaine de Chimie (SOACHIM), Vol. 28, 2009, pp. 67-77.

[15]   R. A. Yetter, F. L. Dryer and H. Rabitz, “Complications of One Step Kinetics for Moist CO Oxidation,” 21st International Symposium on Combustion, The Combustion Institute, Pittsburgh, 1986, pp. 749-760.

[16]   I. Glassman, “Combustion,” 3rd Edition, Academic Press, Waltham, 1996.

[17]   F. L. Dryer, D. W. Naegeli and I. Glassman, “Temperature Dependence of the Reaction CO + OH?CO2 + H,” Combustion and Flame, Vol. 17, 1971, pp. 270-272. doi:10.1016/S0010-2180(71)80173-6

[18]   R. S. Brokaw, “Ignition Kinetics of the Carbon Monoxide-Oxygen Reaction,” 11th International Symposium on Combustion, The Combustion Institute, Pittsburgh, 1967, p. 1063.

[19]   G. De Soete, “Mécanismes de Formation et de Destruction des Oxydes D’Azote Dans la Combustion,” Revue Générale de Thermique, Vol. 330-331, 1989, pp. 353-373.

 
 
Top