Kruskal Dynamics for Radial Geodesics

Abhas Mitra^{*}

Show more

References

[1] C.W. Misner, K. S. Thorne, and J. Wheeler, “Gravitation”, (Freeman, San Fransisco, 1973)

[2]
S.L. Shapiro and S.A. Teukolsky, “Black Holes, White Dwarfs and Neutron Stars: The Physics of Compact Ob-jects,” Wiley, New York, 1983.
doi:10.1002/9783527617661

[3]
A. Mitra, “Black Holes or Eternally Collapsing Objects: A Review of 90 Years of Misconceptions,” in “Focus on Black Hole Research”, ed. Paul V. Kreitler. ISBN 1-59454-460-3, Nova, New York, 2006.

[4]
A. Mitra, “On the non-occurrence of Type I X-ray bursts from the black hole candidates,” Advances in Space Re-search, Vol. 38, 2006, p. 2917-2919.

[5]
doi:10.1016/j.asr.2006.02.074
A. Mitra, “Quantum Information Paradox: Real or Ficti-tious,” Pramana, Vol. 73, No. 3, 2009, pp. 615-620.
doi:10.1007/s12043-009-0113-9

[6]
A. Mitra, “Comments on `The Euclidean Gravitational Action as Black Hole Entropy, Singularities, and Space Time Voids',” Journal of Mathematical Physics, Vol. 50, No. 4, 2009.

[7]
A. Mitra, “The fallacy of Oppenheimer Snyder Collapse: No General Relativistic Collapse at All, No Black Hole, No Physical Singularity,” Astrophysics and Space Science, Vol. 332, No. 1, 2011 pp. 43-48.
doi:10.1007/s10509-010-0578-5

[8]
M.D. Kruskal, “Maximal Extension of Schwarzschild Metric,” Phys. Rev. Vol. 119, Vol. 119, Issue 5, 1960, pp. 1743-1745.

[9]
P. Szekeres, “On the singularities of a Riemannian mani-fold. Math. Debreca.,” Vol. 7, 1960, 285.

[10]
S. Chandrasekhar, “The Mathematical Theory of Black Holes,” Clarendron, Oxford, 1983.