Back
 ENG  Vol.4 No.9 , September 2012
Field of Stresses in an Isotropic Plane with Circular Inclusion under Tensile Stress
Abstract: Within the framework of the linear theory of elasticity, the analytical equations for the components of the stress tensor for а plane with а circular inclusion under tensile loading have been derived using the method of superposition. The given approach allows one to describe the plane-stress state of the plane both for the case of rigid and “soft” inclusions.
Cite this paper: D. Yevgeny and G. Lasko, "Field of Stresses in an Isotropic Plane with Circular Inclusion under Tensile Stress," Engineering, Vol. 4 No. 9, 2012, pp. 583-589. doi: 10.4236/eng.2012.49074.
References

[1]   I. A. Ovid’ko and A. G. Sheinerman, “Elastic Fields of Nanoscopic Inclusions in Nanocomposites,” Reviews on Advanced Materials Science, Vol. 9, 2005, pp. 17-33.

[2]   N. A. Bert, A. L. Kolesnicova, A. E. Romanov and V. V. Tshaldushev, “Elastic Behavior of a Spherical Inclusion with a Given Uniaxial Dilatation,” Physics of the Solid State, Vol. 44, No. 12, 2002, pp. 2139-2148. doi:10.1134/1.1529918

[3]   M. Lai, E. Krempl and D. Ruben, “Introduction in Continuum Mechanics,” 4th Edition, Elsevier, Oxford, 2010.

[4]   S. P. Timoshenko and J. N. Goodier, “Theory of Elasticity,” 3rd Edition, McGraw Hill, New York, 1970.

[5]   V. А. Levin, “Many-Folded Superposition of Great Deformations in Elastic and Viscous-Elastic Bodies,” Fizmatgiz, Moscow, 1999.

[6]   S. L. Crouch and А. М. Starfield, “Boundary Element Methods in Solid Mechanics,” George Allen & Unwin, London, 1983.

[7]   А. V. Mal and S. J. Singh, “Deformation of Elastic Solids,” Prentice Hall, New York, 1992.

[8]   D. E. Eshelby, “Definition of the Stress Field, Which Was Creating bу Elliptical Inclusion,” Proceedings of the Royal Society А, Vol. 241, No. 1226, 1957, p. 376. doi:10.1098/rspa.1957.0133

[9]   D. E. Eshelby, “Elastic Field outside the Elliptical Inclusion,” Proceedings of the Royal Society А, Vol. 252, No. 1271, 1959, p. 561. doi:10.1098/rspa.1959.0173

[10]   G. Kirsch, “Die Theorie der Elastizitat und die Bedurfnisse der Festigkeitslehre,” Zantralblatt Verlin Deutscher Ingenieure, Vol. 42, 1898, pp. 797-807.

[11]   “Physical Values: Handbook,” Energoatomizdat, Moscow, 1991.

 
 
Top