AMPC  Vol.2 No.3 , September 2012
Ab Initio Study of Electronic Properties of a Armchair (7,7) Carbon Nanotube
ABSTRACT
The electronic structure, band gap and density of states of (7,7) Armchair carbon nanotube by the full potentiallin- earized augmented plane wave (FP-LAPW)method in the framework density functional theory (DFT) with the generalized gradient approximation (GGA) were studied. The calculated band structure and density of state of Armchair (7,7) carbon nanotube were in good agreement with theoretical and experimental results.

Cite this paper
H. Salehi and K. Gharbavi, "Ab Initio Study of Electronic Properties of a Armchair (7,7) Carbon Nanotube," Advances in Materials Physics and Chemistry, Vol. 2 No. 3, 2012, pp. 159-162. doi: 10.4236/ampc.2012.23024.
References
[1]   S. Iijima, “Helical Microtubules of Graphitic Carbon,” Nature, Vol. 354, pp. 56-58 (1991). doi:10.1038/354056a0

[2]   M. Daenen, R.D. de Fouw, B.Hamers, P.G.A.Janssen, K. Schouteden and M.A.J Veld, ” The Wondrous World of Carbon Nanotubes”,Eindhoven Uni-versity of Technology (2003).

[3]   F. Kreupl, et al., “Carbon Nanotubes in Interconnect Applications,” MicroelectronicEngineering, Vol.64, pp. 399-408 (2002). doi:10.1016/S0167-9317(02)00814-6

[4]   B. Q. Wei, et al., “Reliability and Current Carrying Capacity of Carbon Nano-tubes,” Appl. Phys. Lett., Vol. 79, No. 8, pp. 1172-1174 (2001). doi:10.1063/1.1396632

[5]   M. Radosavljevic, et al., “High-field Electrical Transport and Breakdown in Bundles of Single-wall Carbon Nanotubes”, Physical Review B, Vol. 64, 241307 (2001).

[6]   H. Dai, Surf. Sci. 500, 218(2002). doi:10.1016/S0039-6028(01)01558-8

[7]   S. Tasaki, K. Maekawa, and T. Yamabe, Phys. Rev. B 57,9301–9318 (1998). doi:10.1103/PhysRevB.57.9301

[8]   I. Bozovic, N. Bozovic, and M. Damnjanovic, Phys. Rev. B62, 6971–6974 (2000). doi:10.1103/PhysRevB.62.6971

[9]   O. E. Alon, V. Averbukh, and N. Moiseyev, Phys. Rev. Lett.85, 5218–5221 (2000). doi:10.1103/PhysRevLett.85.5218

[10]   E. L. Ivchenko and B. Spivak, Phys. Rev. B 66, 155404–155409 (2002). doi:10.1103/PhysRevB.66.155404

[11]   J. P. Perdew, J.A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B46, 6671-6687 (1992). doi:10.1103/PhysRevB.46.6671

[12]   M. Peterson, F. Wanger, L. Hufnagel, M. Scheffler, P. Blaha and K. Schwarz, Computer Physics Communications, 126, 294-309 (2000). doi:10.1016/S0010-4655(99)00495-6

[13]   P. Blaha and K. Schwarz, WIEN2k, Vienna University of Technology Austria (2008).

[14]   T. Movlarooy, A. Kompany, S. M. Hosseini and N. Shahtahmasebi,” Optical absorption and electron energy loss spectra of single-walled carbon nanotubes”, J. Computational Materials Science 49, 450–456 (2010). doi:10.1016/j.commatsci.2010.05.035

[15]   D. J. Mowbray, C. Morgan and K. S. Thygesen,” Influence of O2 and N2 on the conductivity of carbon nanotube networks”, PHYSICAL RE-VIEW B 79, 195431 (2009). doi:10.1103/PhysRevB.79.195431

[16]   Y. Maeda, Sh. Kimura, M. Kanda, Y. Hirashima, T .Hasegawa, T. Wakahara, Y. Lian, T. Nakahodo, T. Tsuchiya, T. Akasaka, J. Lu, X. Zhang, Z. Gao, Y. Yu, Sh. Nagase, S.Kazaoui,N.Minami, T. Shimizu, H. Tokumoto, and R.SaitoO,” Large-Scale Separation of Metallic and Semiconducting Single- Walled Carbon Nanotubes”, J. AM. CHEM. SOC. 127, 10287-10290(2005). doi:10.1021/ja051774o

[17]   W.Zhu, X. Yan and Y.Xiao,” Hexagonal silicon nanotube confined inside a carbon nanotube: A first-principles study”, Physics Letters. A 372, 1308-1312 (2008) doi:10.1016/j.physleta.2007.09.017

 
 
Top