Back
 AJCM  Vol.2 No.3 , September 2012
Plane Stagnation Double-Diffusive MHD Convective Flow with Convective Boundary Condition in a Porous Media
Abstract: A numerical analysis has been carried out to study the problem of plane stagnation double-diffusive MHD convective flow with convective boundary condition in a porous media. The governing nonlinear partial differential equations have been reduced to systems of nonlinear ordinary differential equations by the similarity transformations. The transformed equations are solved numerically by using the classical fourth order Runge-Kutta method together with the shooting technique implemented on a computer program. The effects of the physical parameters are examined on the velocity, temperature and concentration profiles. Numerical data for the skin-friction coefficients, Nusselt and Sherwood numbers have been tabulated for various parametric conditions and are also shown graphically and discussed.
Cite this paper: O. Gideon and S. Abah, "Plane Stagnation Double-Diffusive MHD Convective Flow with Convective Boundary Condition in a Porous Media," American Journal of Computational Mathematics, Vol. 2 No. 3, 2012, pp. 223-227. doi: 10.4236/ajcm.2012.23029.
References

[1]   Hiemenz K., The boundary layer on a circular cylinder in uniform flow (in German), Dingl. Polytec. J. 326 (1911), pp. 321-328.

[2]   Attia H. A., Hydrodynamic stagnation point flow with heat transfer over a permeable surface, Arabian J. Science & Engineering, 28 (2003), IB, pp. 107-112.

[3]   Massoudi, M. and Ramezan, M. "Boundary Layers Heat Transfer Analysis of a Viscoelastic Fluid at a Stagnation Point", Proceedings of the ASME Heat Transfer Division, 130 (1990), pp. 81–86.

[4]   Chiam T.C., Magnetohydrodynamic heat transfer over a non-Isothermal stretching sheet, Acta Mecanica, 122 (1997), 1-4, pp. 169-179.

[5]   Ariel, P.D., "Hiemenz Flow in Hydromagnetics", Acta Mechanica, 103 (1994), pp. 31–43. doi:10.1007/BF01180216

[6]   Chamkha, A.J. "Hydromagnetic Plane and Axisymmetric Flow Near a Stagnation Point with Heat Transfer", Int. Comm. Heat and Mass Transfer, 25(2) (1998), pp. 269–278. doi:10.1016/S0735-1933(98)00014-1

[7]   Attia H. A., Hydrodynamic stagnation point flow with heat transfer over a permeable surface, Arabian J. Science & Engineering, 28 (2003), IB, pp. 107-112

[8]   Crane L. J. (1970) Flow past a Stretching Plate, J. Applied Math. Phys. (ZAMP), 21:645-647

[9]   Vleggaar J (1977). Laminar boundary layer behavior on continuous accelerating surfaces. Chem. Eng. Sci., 32: 1517-1525. doi:10.1016/0009-2509(77)80249-2

[10]   Gupta, P. S., Gupta, A. S. Heat and mass transfer on a stret-ching sheet with suction and blowing, Can. J

[11]   Soundalgekar VM, Ramana TV (1980). Heat transfer past a continuous moving plate with variable temperature. Warme-Und Stoffuber tragung., 14: 91-93. doi:10.1007/BF01806474

[12]   Grubka LJ, Bobba KM (1985). Heat transfer characteristics of a continuous stretching surface with variable temperature. J. Heat Transfer, 107:248-250. doi:10.1115/1.3247387

 
 
Top