WJNSE  Vol.2 No.3 , September 2012
Preparation, Characterization and Catalytic Activity of Palladium Nanoparticles Embedded in the Mesoporous Silica Matrices
ABSTRACT
Novel in-situ reduction approach was applied for the synthesis of palladium nanoparticles in the pores of mesoporous silica materials with grafted siliconhydride groups. Matrices possessing different structural properties (MCM-41, SBA-15 and Silochrom) were used. Samples were studied by nitrogen adsorption-desorption method, low-angle X-ray diffraction, transmission electron microscopy (TEM) and FT-IR/PAS spectroscopy. The temperature-programmed oxidation (TPO) and reduction (TPR) methods were applied to examine reducibility of palladium species. Palladium containing catalysts were tested in methane oxidation reaction. It was demonstrated that relatively large pores in SBA-15 type silica facilitated formation of well-dispersed palladium nanoparticles confined in the pores channels. In the case of MCM-41 support, metallic palladium nanoparticles were formed on the external surface. The obtained materials showed high catalytic activity. Lower activity of the samples containing small crystallites located in the pore volume at high temperatures was related to worse accessibility of active sites to the reation mixture.

Cite this paper
N. Ivashchenko, W. Gac, V. Tertykh, V. Yanishpolskii, S. Khainakov, A. Dikhtiarenko, S. Pasieczna-Patkowska and W. Zawadzki, "Preparation, Characterization and Catalytic Activity of Palladium Nanoparticles Embedded in the Mesoporous Silica Matrices," World Journal of Nano Science and Engineering, Vol. 2 No. 3, 2012, pp. 117-125. doi: 10.4236/wjnse.2012.23015.
References
[1]   L. J. Jongh, “Physics and chemistry of metal clusters compounds”, Kluwer Academic Publishers, Dordrecht, 1994. doi:10.1007/978-94-015-1294-7

[2]   I. Yuranov, P. Moeckli, E. Suvorova, P. Buffat, L. Ki-wi-Minsker, A. Renken, “Pd/SiO2 catalysts: synthesis of Pd nanoparticles with the controlled size in mesoporous silicas”, J Mol Catal A-Chem, Vol. 192, 2003, pp. 239-251. doi:10.1016/S1381-1169(02)00441-7

[3]   L. X. Zhang, J. L. Shi, J. Yu, Z. L. Hua, X. G. Zhao, M. L. Ruan, “A New In-Situ Reduction Route for the Synthesis of Pt Nanoclusters in the Channels of Mesoporous Silica SBA-15”, Adv Mater, Vol. 14, 2002, pp. 1510 – 1513. doi:10.1002/1521-4095(20021016)14:20<1510::AID-ADMA1510>3.0.CO;2-W

[4]   C. Sener, T. Dogu, G. Dogu, “Effects of Synthesis Conditions on the Structure of Pd Incorporated MCM-41 Type Mesoporous Nanocomposite Catalytic Materials with High Pd/Si Ratio”, Micropor Mesopor Mater, Vol. 94, 2006, pp. 89-98. doi:10.1016/j.micromeso.2006.03.026

[5]   D. D. Dharani, A. Sayari, “Applications of pore-expanded mesoporous silica 6. Novel synthesis of monodispersed supported palladium nanoparticles and their catalytic activity for Suzuki reaction”, J Catal, Vol. 246, 2007, pp. 60-65. doi:10.1016/j.jcat.2006.11.020

[6]   P. Wang, Z. Wang, J. Li, Y. Bai, “Preparation, characterizations, and catalytic characteristics of Pd nanoparticles encapsulated in mesoporous silica”, Micropor Mesopor Mater, Vol. 116, 2008, pp. 400-405. doi:10.1016/j.micromeso.2008.04.029

[7]   J. Zhu, Z. Konya, V. F. Puntes, I. Kiricsi, C.X. Miao, J. W. Ager, A.P. Alivisatos, A. Somorjai, “Encapsulation of Metal (Au, Ag, Pt) Nanoparticles into the Mesoporous SBA-15 Structure”, Langmuir, Vol. 19, 2003, pp. 4396-4401. doi:10.1021/la0207421

[8]   J. Garcia-Martinez, N. Linares, S. Sinibaldi, E. Coronado, A. Ribera, “Incorporation of Pd nanoparticles in mesostructured silica”, Micropor Mesopor Mater, Vol. 117, 2008, pp. 170-177. doi:10.1016/j.micromeso.2008.06.038

[9]   D. V. Goia, E. Matijevich, “Preparation of monodispersed metal particles”, New J Chem, Vol. 22, 1998, pp.1203-1215. doi:10.1039/a709236i

[10]   J. J. Reed-Mundell, V. D. Nadkarni, M. J. Kunz, W. C. Fry, L. J. Fry, “Formation of New Materials with Thin Metal Layers through "Directed" Reduction of Ions at Surface-Immobilized Silyl Hydride Functional Groups. Silver on Silica”, Chem Mater, Vol. 7, 1995, pp.1655-1660. doi:10.1021/cm00057a012

[11]   G. B. Budkevich, V. J. Momot, I. I. Sirenko, J. A. Tarasenko, I. A. Sheka, “Reduction of mercury ions by porous highmolecular hydridepolysiloxane”, Ukr Chem J, Vol. 40, 1974, pp. 364-368.

[12]   G. B. Budkevich, I. B. Slinyakova, I. E. Neimark, “Reducing properties of xerogel of hydridepolysiloxane”, Russ Colloid J, Vol. 28, 1966, pp. 21-25.

[13]   K. V. Katok, V. A. Tertykh, V. V. Yanishpolskii, “Synthesis and application of metal-containing silicas”, In: A. Vaseashta, I. N. Mihailescu, Ed., NATO Science for Peace and Security Series B: Physics and Biophysics “Functionalized Nanoscale Materials, Devices, and Systems, Springer, 2008, pp. 335-339. doi:10.1007/978-1-4020-8903-9_27

[14]   K. V. Katok, V. A. Tertykh, V. V. Yanishpolskii, “Reduction nanoparticles of gold in surface layer of modified silica”, Russ J Phys Chem, Vol. 82, 2008, pp. 1438-1441. doi:10.1134/S0036024408090045

[15]   K. V. Katok, V. A. Tertykh, V. V. Yanishpolskii, “Synthesis and application of metal-containing silicas”, In: J. P. Reithmaier, P. Petkov, W. Kulisch, C. Popov, Ed., NATO Science for Peace and Security Series B: Physics and Biophysics “Nanostructured Materials for Advanced Technological Applications”, Springer, 2009, pp. 44-49.

[16]   B. Stasinska, A. Machocki, K. Antoniak, M. Rotko, J. L. Figueiredo, F. Gon?alves, “Importance of palladium dispersion in Pd/Al2O3 catalysts for complete oxidation of humid low-methane–air mixtures”, Catal Today, Vol. 137, 2008, pp. 329-334. doi:10.1016/j.cattod.2008.05.015

[17]   B. Stasinska, W. Gac, T. Ioannides, A. Machocki, “Complete oxidation of methane over palladium supported on alumina modified with calcium, lanthanum, and cerium ions”, J Nat Gas Chem, Vol. 16, 2007, pp. 342-348. doi:10.1016/S1003-9953(08)60002-X

[18]   Y. H. Chin, D. E. Resasco, “Catalytic oxidation of methane on supported palladium under lean conditions: kinetics, structure and properties”, Catalysis. Roy Soc Chem, Vol. 14, 1999, pp. 1-39.

[19]   M. Grun, K. K. Unger, A. Matsumoto, K. Tsutsumi, “Novel Pathways for the Preparation of Mesoporous Mcm-41 Materials - Control of Porosity and Morphology”, Micropor Mesopor Mater, Vol. 27, 1999, pp. 207-216. doi:10.1016/S1387-1811(98)00255-8

[20]   D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Frederickson, B. F. Chmelka, G. D. Stucky, “Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 Angstrom pores”, Science, Vol. 279, 1998, pp. 548-552. doi:10.1126/science.279.5350.548

[21]   N. A. Ivashchenko, K. V. Katok, V. A. Tertykh, V. V. Yanishpolskii, S. A. Khainakov, “Silica with grafted silicon hydride groups and its application for preparation of palladium nanoparticles”, Int J Nanopart, Vol. 4, 2011, pp. 350-358. doi:10.1504/IJNP.2011.043497

[22]   V. N. Losev, G. V. Volkova, N. V. Maznyak, A. K. Trofimchuk, E. S. Yanovskaya, “Palladium adsorption on silica modified with N-allyl-N’-propylthiourea and subsequent determination by spectrometry”, Russ J Anal Chem, Vol. 54, 1999, pp. 1254-1258.

[23]   N. A. Ivashchenko, K. V. Katok, V. A. Tertykh, V. V. Yanishpolskii, L. P. Oleksenko, L.V. Lutsenko, S.A. Khainakov, “Palladium nanoparticles in the surface layer of hydridesilica and their activity in carbon monoxide oxidation”, Kharkov Uni Bull Chem Ser, Vol. 895, 2010, [1] pp. 241-247.

[24]   C. W. Chou, S. J. Chu, H. J. Chiang, C. Y. Huang, C. J. Lee, S. R. Sheen, T. P. Perng, C. T. Yeh, “ Temperature-Programmed Reduction Study on Calcination of Nano-Palladium”, J Phys Chem B, Vol. 105, 2001, pp. 9113–9117. doi:10.1021/jp011170g

[25]   K. Muto, N. Katada, M. Niwa, “Thermallystable environmental catalyst: oxidation of methane over calcined palladium loaded on silica monolayer”, Catal Today, Vol. 35, 1997, pp. 145-151. doi:10.1016/S0920-5861(96)00141-1

[26]   T. Teranishi, M. Miyake, “Size Control of Palladium Nanoparticles and Their Crystal Structures”, Chem Mater, Vol. 10, 1998, pp. 594–600. doi:10.1021/cm9705808

 
 
Top