JMP  Vol.3 No.9 A , September 2012
Geometrization of Radial Particles in Non-Empty Space Complies with Tests of General Relativity
Author(s) I. E. Bulyzhenkov*
ABSTRACT
Curved space-time 4-interval of any probe particle does not contradict to flat non-empty 3-space which, in turn, assumes the global material overlap of elementary continuous particles or the nonlocal Universe with universal Euclidean geometry. Relativistic particle’s time is the chain function of particles speed and this time differs from the proper time of a motionless local observer. Equal passive and active relativistic energy-charges are employed to match the universal free fall and the Principle of Equivalence in non-empty (material) space, where continuous radial densities of elementary energy-charges obey local superpositions and mutual penetrations. The known planetary perihelion precession, the radar echo delay, and the gravitational light bending can be explained quantitatively by the singularity-free metric without departure from Euclidean spatial geometry. The flatspace precession of non-point orbiting gyroscopes is non-New- tonian one due to the Einstein dilation of local time within the Earth’s radial energy-charge rather than due to unphysical warping of Euclidean space.

Cite this paper
Bulyzhenkov, I. (2012) Geometrization of Radial Particles in Non-Empty Space Complies with Tests of General Relativity. Journal of Modern Physics, 3, 1342-1355. doi: 10.4236/jmp.2012.329172.
References
[1]   I. E. Bulyzhenkov, “Thermoelectric Flux in Superconducting Hollow Cylinders,” Physical Review B, Vol. 51, No. 2, 1995, pp. 1137-1139. doi:10.1103/PhysRevB.51.1137

[2]   I. E. Bulyzhenkov, “Superfluid Mass-Energy Densities of Nonlocal Particle and Gravitational Field,” Journal of Superconductivity and Novel Magnetism, Vol. 22, No. 8, 2009, pp. 723-727. doi:10.1007/s10948-009-0583-5

[3]   I. E. Bulyzhenkov, “Relativistic Quantization of Cooper Pairs and Distributed Electrons in Rotating Superconductors,” Journal of Superconductivity and Novel Magnetism, Vol. 22, No. 7, 2009, pp. 627-629. doi:10.1007/s10948-009-0510-9

[4]   A. Einstein and M. Grossmann, “Entwurf Einer Verallgemeinerten Relativitatstheorie und Einer,” Zeitschrift für Mathematik und Physik, Vol. 62, 1913, pp. 225-261.

[5]   A. Einstein, “Sitzungsber. Preuss. Akad. Wiss. Berlin,” Math. Phys., 1915, pp. 778, 799, 831, 844.

[6]   A. Einstein, “Die Grundlage der Allgemeinen Relativitatstheorie,” Annalen der Physik, Vol. 354, No. 7, 1916, pp. 769-822. doi:10.1002/andp.19163540702

[7]   D. Hilbert, “Die Grundlagen der Physik,” Nachrichten K. Gesellschaft Wiss. G?ttingen, Math-Phys. Klasse, Heft 3, S. 395 (1915).

[8]   G. Mie, “Grundlagen einer Theorie der Materie,” Annalen der Physik, Vol. 344, No. 11, 1912, pp. 1-40. doi:10.1002/andp.19123441102

[9]   K. Schwarzschild, “Uber das Gravitationsfeld eines Mas- senpunktes nach der Einsteinschen Theorie,” Sitzungsberichte der K?niglich-Preussischen Akademie der Wissen- schaften, Vol. 3, 1916, pp. 189-196.

[10]   J. Droste, “The Field of a Single Centre in ElNSTEIN’s Theory of Gravitation,” Proc. Kon. Ned. Akad. Wet. Amsterdam 19, 197 (1916).

[11]   N. Rosen, “General Relativity and Flat Space. I,” Physical Review, Vol. 57, No. 2, 1940, pp. 147-150. doi:10.1103/PhysRev.57.147

[12]   A. A. Logunov, “The Theory of Gravitational Field,” Nauka, Moscow, 2001.

[13]   W. Petry, “Gravitation in Flat Space-Time,” General Relativity and Gravitation, Vol. 13, No. 9, 1981, p. 865.

[14]   N. I. Lobachevsky, “A Concise Outline of the Foundations of Geometry,” University of Kazan Messenger, Kazan, 1829.

[15]   J. Bolyai, “Appendix Explaining the Absolutely True Science of Space,” In: F. Bolyai, Ed., Tentamen, Transylvania, 1832.

[16]   B. Riemann, “On the Hypotheses That Form the Foundations of Geometry,” 1854 Lecture (Nachrichten K. Gesellschaft Wiss, Gottingen, 1868.

[17]   P. De Bernardis, et al., “A Flat Universe from High-Resolution Maps of the Cosmic Microwave Background Radiation,” Nature, Vol. 404, No. 6781, 2000, pp. 955-959. doi:10.1038/35010035

[18]   A. Lange, et al., “Cosmological Parameters from the First Results of Boomerang,” Physical Review D, Vol. 63, No. 4, 2001, Article ID: 042001. doi:10.1103/PhysRevD.63.042001

[19]   S. Hanany, et al., “MAXIMA-1: A Measurement of the Cosmic Microwave Background Anisotropy on Angular Scales of 10' - 5°,” The Astrophysical Journal Letters, Vol. 545, No. 1, 2001, pp. L5-L9. doi:10.1086/317322

[20]   E. Komatsu, et al., “Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation,” The Astrophysical Journal Supplement Series, Vol. 180, No. 2, 2009, pp. 330-376. doi:10.1088/0067-0049/180/2/330

[21]   C. W. Misner, K. S. Thorne and J. A. Wheeler, “Gravitation,” Freeman, San Francisco, 1973.

[22]   R. Wald, “General Relativity,” University of Chicago Press, Chicago, 1984.

[23]   C. M. Will, “Theory and Experiment in Gravitational Physics,” Cambridge University Press, Cambridge, 1981.

[24]   L. D. Landau and E. M. Lifshitz, “The Classical Theory of Fields,” Pergamon, Oxford, 1971.

[25]   S. Weinberg, “Gravitation and Cosmology,” John Wiley and Sons, New York, 1972.

[26]   I. E. Bulyzhenkov, “Einstein’s Gravitation for Machian Relativism of Nonlocal Energy-Charges,” International Journal of Theoretical Physics, Vol. 47, No. 5, 2008, pp. 1261-1269. doi:10.1007/s10773-007-9559-z

[27]   R. Weitzenbock, “Invariantentheorie,” Noordhoff, Groningen, 1923.

[28]   G. Vitali, Atti Soc. Ligust. Sci. Lett., Vol. 11, 1924, p. 248.

[29]   E. Cartan and J. Schouten, “On Riemannian Geometries admitting an Absolute Parallelism,” Proceedings Knkl. Neder. Akad. Vol. 28, 1926, p. 400.

[30]   W. Weber, “On the Electromagnetic and Electrostatic Units of Current and the Meaning of the Absolute System of Units,” Annalen der Physik, Vol. 73, 1848, p. 193.

[31]   A. Einstein, “On a Stationary System with Spherical Symmetry Consisting of Many Gravitating Masses,” Annals of Mathematics, Vol. 40, No. 4, 1939, pp. 922-936. doi:10.2307/1968902

[32]   J. V. Narlikar, “A Random Walk in General Relativity and Cosmology,” Wiley Eastern, New Delhy 1985, p. 171.

[33]   J. V. Narlikar and T. Padmanabhan, “The Schwarzschild Solution: Some Conceptual Difficulties,” Foundation of Physics, Vol. 18, No. 6, 1988, pp. 659-668.

[34]   A. Einstein, “über das Relativit?tsprinzip und die aus Demselben Gezogenen Folgerungen,” Jahrbuch der Radioaktivitaet und Elektronik, Vol. 4, 1907, p. 411.

[35]   A. Einstein, “über den Einflu? der Schwerkraft auf die Ausbreitung des Lichtes,” Annalen der Physik, Vol. 340, No. 10, 1911, pp. 898-908. doi:10.1002/andp.19113401005

[36]   R. V. Pound and G. A. Rebka, “Apparent Weight of Photons,” Physical Review Letters, Vol. 4, No. 7, 1960, pp. 337-341. doi:10.1103/PhysRevLett.4.337

[37]   I. I. Shapiro, “Fourth Test of General Relativity,” Physical Review Letters, Vol. 13, No. 26, 1964, pp. 789-791. doi:10.1103/PhysRevLett.13.789

[38]   R. d’E. Atkinson, “General relativity in Euclidean Terms,” Proceedings of the Royal Society A, Vol. 272, No. 1348, 1963, pp. 60-78.

[39]   F. H. J. Cornish, “General Relativity in Terms of a Background Space,” Proceedings of the Royal Society A, Vol. 376, No. 1366, 1963, pp. 413-417. doi:10.1098/rspa.1963.0214

[40]   C. M?ller, “The Theory of Relativity,” Oxford University Press, Oxford, 1952, p. 308.

[41]   C. W. F. Everitt, “The Stanford Relativity Gyroscope Experiment: History and Overview,” In: J. D. Fairbank, et al., Eds., Near Zero: New Frontiers of Physics, Freeman and Co., New York, 1988, p. 587.

[42]   L. I. Schiff, “Motion of a Gyroscope According to Einstein’s Theory of Gravitation,” Proceedings of the Na- tional Academy of Sciences of the United States of America, Vol. 46, No. 6, 1960, pp. 871-882. doi:10.1073/pnas.46.6.871

[43]   L. I. Schiff, “Possible New Experimental Test of General Relativity Theory,” Physical Review Letters, Vol. 4, No. 5, 1960, pp. 215-217. doi:10.1103/PhysRevLett.4.215

 
 
Top