Back
 JMP  Vol.3 No.9 A , September 2012
Time Evolution of Horizons
Abstract: Finding the origin of Hawking radiation has been a puzzle to researchers. Using a loop quantum gravity description of a black hole slice, a density matrix is defined using coherent states for space-times with apparent horizons. Evolving the density matrix using a semi-classical Hamiltonian in the frame of an observer outside the horizon gives the origin of Hawking radiation.
Cite this paper: Dasgupta, A. (2012) Time Evolution of Horizons. Journal of Modern Physics, 3, 1289-1297. doi: 10.4236/jmp.2012.329166.
References

[1]   A. Ashtekar, New Perspectives in Canonical Gravity,” Bibliopolis, Napoli, 1988.

[2]   C. Rovelli, “Quantum Gravity,” Cambridge University Press, Cambridge, 2004. doi:10.1017/CBO9780511755804

[3]   T. Thiemann, “Introduction to Modern Canonical Quantum General Relativity,” Cambridge University Press, Cambridge, 2007. doi:10.1017/CBO9780511755682

[4]   B. Hall, “The Segal-Bargmann ‘Coherent State’ transform for Compact Lie Groups,” Journal of Functional Analysis, Vol. 122, No. 1, 1994, pp. 103-151. doi:10.1006/jfan.1994.1064

[5]   T. Thiemann, “Gauge Field Theory Coherent States (GCS): 1. General Properties,” Classical and Quantum Gravity, Vol. 18, No. 1, 2001, pp. 2025-2064. doi:10.1088/0264-9381/18/11/304

[6]   A. Dasgupta, “Semiclassical Quantisation of Space-Times with Apparent Horizons,” Classical and Quantum Gravity, Vol. 23, No. 3, 2006, pp. 635-671. doi:10.1088/0264-9381/23/3/007

[7]   A. Dasgupta, “Coherent States for Black Holes,” Journal of Cosmology and Astroparticle Physics, Vol. 3, No. 8, 2004, pp. 1-36.

[8]   A. Dasgupta, “Semiclassical Horizons,” Canadian Journal of Physics, Vol. 86, No. 4, 2008, pp. 659-662.

[9]   A. Dasgupta and H. Thomas, “Correcting Gravitational Entropy of Spherically Symmetric Horizons,” 2006. arXiv:gr-qc/0602006

[10]   A. Dasgupta, “Entropic Origin of Hawking Radiation,” Proceedings of 12th Marcel Grossman Meeting, Paris, July 2009.

[11]   J. Brown and J. York, “Quasilocal Energy and Conserved Charges Derived from the Gravitational Action,” Physical Review D, Vol. 47, No. 4, 1993, pp. 1407-1419. doi:10.1103/PhysRevD.47.1407

[12]   B. Dittrich and T. Thiemann, “Testing the Master Constraint Program for Loop Quantum Gravity: I. General Framework Class,” Classical and Quantum Gravity, Vol. 23, No. 4, 2006, pp. 1025-1066. doi:10.1088/0264-9381/23/4/001

[13]   B. Bahr and T. Thiemann, “Gauge-Invariant Coherent States for Loop Quantum Gravity. II. Non-Abelian Gauge Groups,” Classical and Quantum Gravity, Vol. 26, No. 4, 2009, p. 045012.

[14]   A. Ashtekar, J. Baez, K. Krasnov and A. Corichi, “Quantum Geometry and Black Hole Entropy,” Physical Re- view Letters, Vol. 80, No. 5, 1998, pp. 904-907. doi:10.1103/PhysRevLett.80.904

[15]   S. W. Hawking and G. Horowitz, “The Gravitational Hamiltonian, Action, Entropy and Surface Terms,” Classical and Quantum Gravity, Vol. 13, No. 6, 1996, pp. 1487- 1498. doi:10.1088/0264-9381/13/6/017

[16]   T. Thiemann and O. Winkler, “Gauge Field Theory Coherent States (GCS) III: Ehrenfest Theorems,” Classical and Quantum Gravity, Vol. 18, No. 21, 2001, pp. 4629-46841. doi:10.1088/0264-9381/18/21/315

[17]   H. Sahlmann and T. Thiemann, “Towards the QFT on Curved Space-Time Limit of QGR. 1. A General Scheme,” Classical and Quantum Gravity, Vol. 23, No. 3, 2006, pp. 867-908. doi:10.1088/0264-9381/23/3/019

[18]   H. Sahlmann and T. Thiemann, “Towards the QFT on Curved Space-Time Limit of QGR. 2. A Concrete Implementation,” Classical and Quantum Gravity, Vol. 23, No. 3, 2006, pp. 909-954. doi:10.1088/0264-9381/23/3/020

[19]   M. K. Parikh and F. Wilczek, “Hawking Radiation as Tunneling,” Physical Review Letters, Vol. 85, No. 24, 2000, pp. 5042-5045. doi:10.1103/PhysRevLett.85.5042

 
 
Top