[1] R. Temam, “Infinite-Dimensional Dynamical Systems in Mechanics and Physics,” Applied Mathematical Sciences, Vol. 68, Springer-Verlag, New York, 1988.
[2] S. Zhu and S. F. Zhou, “Dimension of the Global Attractor for the Damped and Driven SINE-Gordon Equation,” Nonlinear Analysis, Vol. 37, 1999, pp. 389-399.
[3] G. X. Wang and S. Zhu, “Dimension of the Global Attractor for the Discretized Damped Sine-Gordon Equation,” Applied Mathematics and Computation, Vol. 117, No. 2-3, 2001, pp. 257-265. doi:10.1016/S0096-3003(99)00179-4
[4] S. F. Zhou, “Dimension of the Global Attractor for Strongly Damped Nonlinear Wave Equation,” Journal of Mathematical Analysis and Applications, Vol. 233, No. 1, 1999, pp. 102-115. doi:10.1006/jmaa.1999.6269
[5] G. Semion, “Frechet Differentiability for a Damped Sine-Gordon Equation,” Journal of Mathematical Analysis and Applications, Vol. 360, No. 2, 2009, pp. 503-517. doi:10.1016/j.jmaa.2009.06.074
[6] X. Y. Han, “Randon Attractors for Stochastic Sine-Gordon Lattice Systems with Multiplicative White Noise,” Journal of Mathematical Analysis and Applications, Vol. 376, No. 2, 2011, pp. 481-493. doi:10.1016/j.jmaa.2010.11.032
[7] P. Massatt, “Limiting Behavior for Strongly Damped Nonlinear Wave Equations,” Journal of Differential Equations, Vol. 48, No. 3, 1983, pp. 334-349. doi:10.1016/0022-0396(83)90098-0