IJMNTA  Vol.1 No.3 , September 2012
Boundary Stabilization of a More General Kirchhoff-Type Beam Equation
ABSTRACT
Simultaneously, considering the viscous effect of material, damping of medium, geometrical nonlinearity, physical nonlinearity, we set up a more general equation of beam subjected to axial force and external load. We prove the existence and uniqueness of global solutions under non-linear boundary conditions which the model is added one damping mechanism at l end. What is more, we also prove the exponential decay property of the energy of above mentioned system.

Cite this paper
J. Zhang and D. Wang, "Boundary Stabilization of a More General Kirchhoff-Type Beam Equation," International Journal of Modern Nonlinear Theory and Application, Vol. 1 No. 3, 2012, pp. 97-101. doi: 10.4236/ijmnta.2012.13014.
References
[1]   S. Woinowsky-Krieger, “The Effect of Axial Force on the Vibration of Hinged Bars,” Journal of applied Mechanics, Vol. 17, 1950, pp. 35-36.

[2]   J. M. Ball, “Initial-Boundary Value Problems for an Extensible Beam,” Journal of Mathematical Analysis and Applications, Vol. 42, No. 1, 1973, pp. 61-90. doi:10.1016/0022-247X(73)90121-2

[3]   L. A. Mederios, “On a New Class of Nonlinear Wave Equations,” Journal of Mathematical Analysis and Applications, Vol. 69, No. 1, 1979, pp. 252-262.

[4]   M. Tucsnak, “Semi-Internal Stabilization for a Nonlinear Euler-Bernoulli Equation,” Mathematical Methods in the Applied Sciences, Vol. 19, No. 11, 1996, pp. 897-907. doi:10.1002/(SICI)1099-1476(19960725)19:11<897::AID-MMA801>3.0.CO;2-#

[5]   S. Kouemou Patcheu, “On a Global Solution and Asymptotic Behavior for the Generalized Damped Extensible Beam Equation,” Journal of Differential Equations, Vol. 135, No. 2, 1997, pp. 299-314. doi:10.1006/jdeq.1996.3231

[6]   F. M. To, “Boundary Stabilization for a Non-Linear Beam on Elastic Bearings,” Mathematical Methods in the Applied Sciences, Vol. 24, No. 8, 2001, pp. 583-594. doi:10.1002/mma.230

[7]   J. M. Ball, “Stability Theory for an Extensible Beam,” Journal of Differential Equations, Vol. 14, No. 3, 1973, pp. 61-90. doi:10.1016/0022-0396(73)90056-9

 
 
Top