References
[1] K. Popper, “Conjecture and Refutations: The Growth of Scientific Knowledge,” Taylor and Francis, Abingdon, 1989.
[2] P. R. Bevington and K. D. Robinson, “Data Reduction and Error Analysis for the Physical Sciences,” McGraw-Hill, London, 1992.
[3] A. A. Penzias and R. A. Wilson, “A Measurement of Excess Antenna Temperature at 4080 Mc/s,” Astrophysical Journal, Vol. 142, No. 7, 1965, pp. 419-421.
doi:10.1086/148307
[4] H. Bondi and T. Gold, “The Steady State Theory of the Expanding Universe,” Monthly Notices of the Royal Astronomical Society, Vol. 108, No. 2, 1948, pp. 252-270.
[5] F. Hoyle, “A New Model of the Expanding Universe,” Monthly Notices of the Royal Astronomical Society, Vol. 108, No. 3, 1948, pp. 372-382.
[6] P. J. E. Peebles, “Principles of Physical Cosmology,” Princeton University Press, Princeton, 1993.
[7] A. H. Guth, “The Inflationary Universe,” Perseus Book, Reading, 1997.
[8] R. B. Partridge, “3K: The Cosmic Microwave Background Radiation,” Cambridge University Press, Cambridge, 1995.
doi:10.1017/CBO9780511525070
[9] D. J. Fixsen and J. C. Mather, “The Spectral Results of the Far Infrared Absolute Spectrophotometer on COBE,” Astrophysical Journal, Vol. 581, No. 12, 2002, pp. 817-822. doi:10.1086/344402
[10] G. F. Smoot et al., “Low Frequency Measurements of the Cosmic Bacground Radiation Spectrum,” The Astrophysical Journal Letters, Vol. 291, No. 4, 1985, pp. L23-L27.
doi:10.1086/184451
[11] M. Zannoni, et al., “TRIS I: Absolute Measurements of the Sky Brightness Temperature at 0.6, 0.82 and 2.5 GHz,” Astrophysical Journal, Vol. 688, No. 11, 2008, pp. 12-23.
doi:10.1086/592133
[12] C. L. Bennett, et al., “Four-year COBE DMR Cosmic Microwave Background Observations: Maps and Basic Results,” Astrophysical Journal, Vol. 464, No. 6, 1996, pp. L1-L4. doi:10.1086/310075
[13] D. Larson, et al., “Seven-Years Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Power Spectra and WMAP-Derived Parameters,” The Astrophysical Journal Supplement, Vol. 192, No. 16, 2011, pp. 1-19.
[14] R. B. Friedman, et al., “Small Angular Scale Measurements of the Cosmic Microwave Background Temperature Power Spectrum from QUaD,” Astrophysical Journal, Vol. 700, No. 8, 2009, pp. L187-L191.
doi:10.1088/0004-637X/700/2/L187
[15] A. Kogut, et al., “Five-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Temperature-Po-larization Correlatioin,” The Astrophysical Journal Supplement, Vol. 148, No. 9, 2003, pp. 161-173.
doi:10.1086/377219
[16] F. Piacentini, et al., “A Measurement of the Polarization-Temperature Angular Cross-Power Spectrum of the Cosmic Microwave Background from the 2003 Flight of BOOMERANG,” Astrophysical Journal, Vol. 647, No. 8, 2006, pp. 833-839. doi:10.1086/505557
[17] G. Polenta, et al., “The BRAIN CMB Polarization Experiment,” New Astronomy Reviews, Vol. 51, No. 3, 2007, pp. 256-259. doi:10.1016/j.newar.2006.11.065
[18] M. L. Brown, et al., “Improved Measurements of the Temperature and Polarization of the Cosmic Microwave Background from QUaD,” Astrophysical Journal, Vol. 705, No. 4, 2009, pp. 978-999.
doi:10.1088/0004-637X/705/1/978
[19] S. Perlmutter, et al., “Measurements of Omega and Lambda from 42 High Redshift Supernovae,” Astrophysical Journal, Vol. 517, No. 6, 1999, pp. 565-586.
doi:10.1086/307221
[20] G. Bertone, D. Hooper and J. Silk, “Particle Dark Matter: Evidence, Candidates and Constraints,” Physics Reports, Vol. 405, No. 1, 2005, pp. 279-390.
doi:10.1016/j.physrep.2004.08.031
[21] W. J. Percival, et al., “Baryon acoustic Oscillations in the Sloan Digital Sky Survey Data Release 7 Galaxy Sample,” Monthly Notices of the Royal Astronomical Society, Vol. 401, No. 2, 2010, pp. 2148-2168.
doi:10.1111/j.1365-2966.2009.15812.x
[22] N. Panagia, “High Redshift Supernovare: Cosmological Implications,” Nuovo Cimento B, Vol. 120, No. 6, 2005, pp. 667-680.
[23] G. Ghirlanda, G. Ghisellini and C. Firmani, “Gamma ray Bursts as Standard Candles to Constrain the Cosmological Parameters,” New Jersey Postal History Society, Vol. 8, No. 7, 2006, pp. 123-124.
[24] M. Macció, et al., “Coupled Dark Energy: Constraints from N-Body Simulations,” Physical Review D, Vol. 69, No. 12, 2004, pp. 123516-123540.
doi:10.1103/PhysRevD.69.123516
[25] P. de Bernardis, et al., “Multiple Peaks in the Angular Power Spectrum of the Cosmic Microwave Background Significance and Consequences for Cosmology,” Astrophysical Journal, Vol. 564, No. 1, 2002, pp. 559-666.
doi:10.1086/324298
[26] P. Valageas and J. Silk, “The Reheating an Reionization History of the Universe,” Astronomy & Astrophysics, Vol. 347, No. 7, 1999, p. 20
[27] A. G. Riess, et al., “Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant,” The Astronomical Journal, Vol. 116, No. 9, 1998, pp. 1009-1038
[28] J. P. Ostriker and P. J. Steihardt, “Cosmic Concordance,” arXiv:astro-ph/9505066v1, 1995.
[29] M. Kowalski, et al., “Improved Cosmological Constraints from New, Old and Combined Supernova Data Sets,” Astrophysical Journal, Vol. 686, No. 10, 2008, pp. 749-778.
doi:10.1086/589937
[30] D. P. Landau and K. Binder, “A Guide to Monte-Carlo Simulations in Statistical Physics,” Cambridge University Press, Cambridge, 2009.
doi:10.1017/CBO9780511994944
[31] Planck Science Team, “Planck Science Team Home,” 2012.
http://www.rssd.esa.int/index?project=Planck
[32] E. Komatsu, et al., “Five-Year Wilkinson Microwave Anisotropy Probe Observations: Cosmological Interpretation,” The Astrophysical Journal Supplement, Vol. 180, No. 2, 2009, pp. 330-376.
doi:10.1017/CBO9780511994944
[33] A.G. Riess et al., “A Redetermination of the Hubble Constant with the Hubble Space Telescope from a Differential Distance Ladder,” Astrophysical Journal, Vol. 699, No. 7, 2009, pp. 539-563. doi:10.1088/0004-637X/699/1/539
[34] E. Komatsu, et al., “Seven-Year Wilkinson Microwave Anisotropt Probe (WMAP) Observations: Power Spectra and WMAP-Derived Parameters,” The Astrophysical Journal Supplement, Vol. 192, No. 18, 2011, pp. 1-47.
[35] J. R. Primack, “Precision Cosmology,” New Astronomy Re- views, Vol. 49, No. 5, 2005, pp. 25-34
[36] S. L. Bridle, O. Lahav and J. P. Ostriker, “Precision Cosmology? Not Just Yet ...,” Science, Vol. 299, No. 3, 2003, pp. 1532-1533. doi:10.1126/science.1082158
[37] J. Joyce, “Bayes Theorem,” In: E. N. Zalta, Ed. The Stanford Encyclopedia of Philosophy, The Metaphysics Research Lab, Stanford, 2008.
http://plato.stanford.edu/entries/bayes-theorem/
[38] J. K. Ghosh, M. Delampady and T. Samanta, “An Introduction to Bayesian Analysis,” Springer, New York, 2006.
[39] J. O. Berger, et al., “Bayesian Robustness,” IMS, Hayward, 1996.
[40] A. Cho, “A Recipe for Cosmos,” Science, Vol. 330, No. 12, 2010, pp. 1615-1616.
doi:10.1126/science.330.6011.1615
[41] L. Amendola, R. Gannouji, D. Polarski and S. Tsyikawa, “Condition for the Cosmological Viability of f(R) Dark Energy Models,” Physical Review D, Vol. 75, No. 8, 2007, pp. 83504-83560. doi:10.1103/PhysRevD.75.083504
[42] J. Dunkley, et al., “The Atacama Cosmology Telescope Cosmological Parameyters from the 2008 Power Spectrum,” Astrophysical Journal, Vol. 739, No. 9, 2011, pp. 52-72. doi:10.1088/0004-637X/739/1/52
[43] R. G. Vishwakarma and J. V. Narlikar, “A Critique of Supernova Data Analysis in Cosmology,” Research in Astronomy and Astrophysics, Vol. 10, No. 1, 2010, pp. 1195-1198.
[44] R. Swinburne, “Introduction to Bayes’s Theorem,” In: R. Swinburne, Ed., Bayes’s Theorem, Oxford University Press, Oxford, 2002, pp. 1-55.
[45] S. J. Press, “Bayesian Statistics,” Wiley, New York 1989
[46] AA.VV., “Bayes Theorem,” In: R. K. Bock, K. Bos, S. Brandt, J. Myrheim and M. Regler, Eds., Formulae and Methods in Experimental Data Evaluation, EPS-CERN, Geneva, 1984, p. 7.