[1] L. Marek-Crnjac, “The Hausdorff Dimension of the Penrose Universe,” Physics Research International, Vol. 2011, 2011, Article ID: 874302.
[2] L. Marek-Crnjac, “A Short History of Fractal Cantorian Space-Time,” Chaos, Solitons & Fractals, Vol. 41, 2009, pp. 2697-2705. doi:10.1016/j.chaos.2008.10.007
[3] J. Hocking and G. Young, “Topology,” Dover Publishing, New York, 1961.
[4] S. L. Lipscomb, “Fractals and Universal Spaces in Dimension Theory,” Springer, New York, 2009. doi:10.1007/978-0-387-85494-6
[5] M. S. El Naschie, “Complexity Theory Interpretation of High Energy Physics and Elementary Particle Mass Spectrum,” In: B. G. Sidharth, Ed., Frontiers of Fundamental Physics, Vol. 3, Universities Press, Hyderbad, 2007, pp. 1-32.
[6] M. Heller and W. H. Woodin, “Infinity: New Research Frontiers,” Cambridge University Press, Cambridge, 2011.
[7] G. N. Ord, “Fractal Space-Time a Geometric Analog of Relativistic Quantum Mechanics,” Journal of Physics A, Vol. 16, No. 9, 1983, pp. 1869-1884. doi:10.1088/0305-4470/16/9/012
[8] L. Nottale, “Fractal Space-Time and Micro Physics,” World Scientific, Singapore City, 1993.
[9] A. Stakhov, “The Mathematics of Harmony”, World Scientific, Singapore, 2009. doi:10.1142/6635
[10] M. S. El Naschie, “A Review of E-Infinity Theory and the Mass Spectrum of High Energy Particle Physics,” Chaos, Solitons & Fractals, Vol. 19, No. 1, 2004, pp. 209-236. doi:10.1016/S0960-0779(03)00278-9
[11] R. L. Devaney, “An Introduction to Chaotic Dynamical Systems,” Addison-Wesley, Redwood City, 1989.
[12] M. S. El Naschie, O. E. Rossler and I. Prigogine, “Quantum Mechanics, Diffusion and Chaotic Fractals,” Pergamon Press—Elsevier Publishing, Oxford, 1995.
[13] L. B. Crowell, “Quantum Fluctutations of Space Time,” World Scientific, Singapore City, 2005. doi:10.1142/5952
[14] L. Glass and M. Mackey, “The Rhythms of Life,” Princeton University Press, Princeton, 1988.
[15] B. B. Mandelbrot, “The Fractal Geometry of Nature,” Freeman, New York, 1983.
[16] J. H. He, E. Goldfain, L. D. G. Sigalotti and A. Mejias, “Beyond the 2006 Physics Nobel Prize for COBE,” China Culture and Science Publishing, Shanghai, 2006.
[17] C. Beck, “Spation-Temporal Chaos and Vacuum Fluctuations of Quantized Fields,” World Scientific, Singapore City, 2002. doi:10.1142/4853
[18] Y. Baryshev and P. Terrikorpi, “Discovery of Cosmic Fractals,” World Scientific, Singapore City, 2002. doi:10.1142/4896
[19] J. Nicolis, G. Nicolis and C. Nicolis, “Non Linear Dynamics and the Two Slit Delayed Experiment,” Chaos, Solitons & Fractals, Vol. 12, 2001, pp. 407-416. doi:10.1016/S0960-0779(00)00190-9
[20] M. S. El Naschie, “Quantum Collapse of Wave Interference Pattern in the Two-Slit Experiment: A Set of Theoretical Resolution,” Nonlinear Science Letter A, Vol. 2, No. 1, 2011, pp. 1-9.
[21] R. Elwes, “Ultimate Logic,” New Scientist, Vol. 211, No. 2183, 2011, pp. 30-33. doi:10.1016/S0262-4079(11)61838-1
[22] J. Ambjorn, J. Jurkiewicz and R. Loll, “The Self-Organizing Universe,” Scientific American, 2008, pp. 24-31.
[23] S. Kranz and H. Park, “Geometric Integration Theory,” Birkhauser, Boston, 2008. doi:10.1007/978-0-8176-4679-0
[24] T. Jech, “Set Theory,” Springer, Berlin, 2003.
[25] A. Kanamori, “The Higher Infinite,” Springer, Berlin, 2003.
[26] A. Kechris, “Classical Descriptive Set Theory,” Springer, New York, 1995. doi:10.1007/978-1-4612-4190-4
[27] L. Graham and J. Kantor, “Naming Infinity,” Harvard University Press, Cambridge, 2009.
[28] L. M. Wapner, “The Pea and the Sun,” A. K. Peters Ltd., Natick, 2005.
[29] F. Morgan, “Geometric Measure Theory,” Elsevier, Amsterdam, 2009.
[30] M. S. El Naschie, “Quantum Entanglement as a Consequence of a Cantorian Micro Space-time Geometry,” Journal of Quantum Information Science, Vol. 1, No. 2, 2011, pp. 50-53. doi:10.4236/jqis.2011.12007
[31] G. Ord, M. S. El Naschie and J. H. He, Fractal Space-Time and Non Commutative Geometry in High Energy Physics, Asian Academic Publishing Ltd., Hong Kong, Vol. 1, No. 1, 2011, pp. 1-46.
[32] G. Ord, M. S. El Naschie and J. H. He, Fractal Space-Time and Non Commutative Geometry in High Energy Physics, Asian Academic Publishing Ltd., Hong Kong, Vol. 2, No. 1, 2012, pp. 1-79.
[33] L. Zadeh, “Fuzzy Logic and Approximate Reasoning,” Synthese, Vol. 30, No. 3-4, 1975, pp. 407-428. doi:10.1007/BF00485052
[34] L. Zadeh, “Fuzzy Sets,” Information and Control, Vol. 8, 1965, pp. 338-353. doi:10.1016/S0019-9958(65)90241-X
[35] K. Kosko, “Fuzzy Thinking,” The New Science of Fuzzy Logic, Hyperion, New York, 1993.
[36] M. S. El Naschie, “Fuzzy Knot interpretation of Yang-Mills Instantons and Witten’s 5 Brane Model,” Chaos, Solitons & Fractals, Vol. 38, No. 5, 2008, pp. 1349-1354. doi:10.1016/j.chaos.2008.07.002
[37] M. S. El Naschie, “From Experimental Quantum Optics to Quantum Gravity via a Fuzzy Kahler Manifold,” Chaos, Solitons & Fractals, Vol. 25, No. 5, 2005, pp. 969-977. doi:10.1016/j.chaos.2005.02.028
[38] M. S. El Naschie, “Fuzzy Dedochaedron Topology and E-Infinity Space-Time as a Model for Quantum Physics,” Chaos, Solitons & Fractals, Vol. 30, No. 5, 2006, pp. 1025-1033. doi:10.1016/j.chaos.2006.05.088
[39] N. M. Ahmed, “George Cantor: The Father of Set Theory,” The Post Graduate Magazine, 2007, pp. 4-14.
[40] M. S. El Naschie, “The Brain and E-Infinity”, International Journal of Nonlinear Sciences and Numerical Simulation, Vol. 7, No. 2, 2006, pp. 128-131.
[41] M. S. El Naschie, “From Symmetry to Particle,” Chaos, Solitons & Fractals, Vol. 32, No. 2, 2007, pp. 427-430. doi:10.1016/j.chaos.2006.09.016
[42] M. S. El Naschie, “Kac-Moody Exceptional E12 from Simplectic Tiling,” Chaos, Solitons & Fractals, Vol. 41, No. 4, 2009, pp. 1569-1571. doi:10.1016/j.chaos.2008.06.020
[43] J. H. He, “Transfinite Physics,” China Culture and Science Publishing, Shanghai, 2005.
[44] M. S. El Naschie, “Knots and Exceptional Lie Groups as Building Blocks of High Energy Particle Physics,” Chaos, Solitons & Fractals, Vol. 41, No. 4, 2009, pp. 1799-1803. doi:10.1016/j.chaos.2008.07.025
[45] M. S. El Naschie, “Symmetry Group Prerequisite for E-Infinity in High Energy Physics,” Chaos, Solitons & Fractals, Vol. 35, No. 1, 2008, pp. 202-211. doi:10.1016/j.chaos.2007.05.006
[46] M. S. El Naschie, “Quantum Groups and Hamiltonian Sets on Nuclear Space-Time Cantorian Manifold,” Chaos, Solitons & Fractals, Vol. 10, No. 7, 1999, pp. 1251-1256. doi:10.1016/S0960-0779(99)00009-0
[47] M. S. El Naschie, “On a Class of Fuzzy Kahler-Like Manifold”, Chaos, Solitons & Fractals, Vol. 26, No. 2, 2005, pp. 257-261. doi:10.1016/j.chaos.2004.12.024
[48] M. S. El Naschie, “On a Class of General Theories for High Energy Particle Physics,” Chaos, Solitons & Fractals, Vol. 14, No. 4, 2002, pp. 649-668. doi:10.1016/S0960-0779(02)00033-4
[49] M. S. El Naschie, “On an Eleven Dimensional E-Infinity Fractal Space-Time,” International Journal of Nonlinear Sciences and Numerical Simulation, Vol. 7, No. 4, 2006, pp. 407-409. doi:10.1515/IJNSNS.2006.7.4.407
[50] M. S. El Naschie, “The Discrete Charm of Certain Eleven Dimensional Space-Time Theory,” International Journal of Nonlinear Sciences and Numerical Simulation, Vol. 7, No. 4, 2006, pp. 477-481.
[51] M. S. El Naschie, “On Fuzzy Kahler-Like Manifold Which Is Consistent with the Two-Slit Experiment,” International Journal of Nonlinear Sciences and Numerical Simulation, Vol. 6, No. 2, 2005, pp. 8895-8898.
[52] M. S. El Naschie, “The Symplectic Vacuum, Exotic Quasi Particles and Gravitational Instanton,” Chaos, Solitons & Fractals, Vol. 22, No. 1, 2004, pp. 1-11. doi:10.1016/j.chaos.2004.01.015
[53] J. H. He, “Non Linear Dynamics and the Nobel Prize in Physics,” International Journal of Nonlinear Sciences and Numerical Simulation, Vol. 8, No. 1, 2007, pp. 1-4. doi:10.1515/IJNSNS.2007.8.1.1
[54] L. Sigalotti and A. Mejias, “On El Naschie’s Conjugate Complex Time, Fractal E-Infinity Space-Time and Faster than Light Particles,” International Journal of Nonlinear Sciences and Numerical Simulation, Vol. 7, No. 4, 2006, pp. 467-472. doi:10.1515/IJNSNS.2006.7.4.467
[55] M. Kaku, “Introduction to Superstrings and M-Theory,” Springer, New York, 1999.
[56] S. Weinberg, “The Quantum Theory of Fields,” Cambridge, Vol. II, 1996.
[57] S. Weinberg, “The Quantum Theory of Fields,” Cambridge, Vol. III, 2000.
[58] M. S. El Naschie, “Quantum Golden Field Theory—Ten Theorems and Various CONJECTURES,” Chaos, Solitons & Fractals, Vol. 36, No. 5, 2008, pp. 1121-1125. doi:10.1016/j.chaos.2007.09.023
[59] M. S. El Naschie, “An Outline for a Quantum Golden Field Theory,” Chaos, Solitons & Fractals, Vol. 37, No. 2, 2008, pp. 317-323. doi:10.1016/j.chaos.2007.09.092
[60] M. S. El Naschie, “Asymptotic Freedom and Unification in a Golden Field Theory,” Chaos, Solitons & Fractals, Vol. 36, No. 3, 2008, pp. 521-525. doi:10.1016/j.chaos.2007.09.004
[61] M. S. El Naschie, “A Guide to the Mathematics of E-Infinity Cantorian Space-Time Theory,” Chaos, Solitons & Fractals, Vol. 25, No. 5, 2005, pp. 995-964. doi:10.1016/j.chaos.2004.12.033
[62] M. S. El Naschie, “Elementary Prerequisites for E-Infinity,” Chaos, Solitons & Fractals, Vol. 30, No. 3, 2006, pp. 579-605. doi:10.1016/j.chaos.2006.03.030
[63] M. S. El Naschie, “The Theory of Cantorian Space-Time and High Energy Particle Physics (An Informal Review),” Chaos, Solitons & Fractals, Vol. 41, No. 5, 2009, pp. 2635-2646. doi:10.1016/j.chaos.2008.09.059
[64] K. Svozil, “Quantum Field Theory on Fractal Space-Time,” Journal of Physics A, Vol. 20, No. 12, 1987, pp. 3861-3875. doi:10.1088/0305-4470/20/12/033
[65] M. S. El Naschie, “Transfinite Harmonization by Taking the Dissonance Out of the Quantum Field Symphony,” Chaos, Solitons & Fractals, Vol. 36, No. 4, 2008, pp. 781-786. doi:10.1016/j.chaos.2007.09.018
[66] M. S. El Naschie, “Extended Renormalization Group Analysis for Quantum Gravity and Newton’s Gravitational Constant,” Chaos, Solitons & Fractals, Vol. 35, No. 3, 2008, pp. 425-431. doi:10.1016/j.chaos.2007.07.059
[67] M. S. El Naschie, “Exact Non-Perturbative-Derivation of Gravity’S G4 Fine Structure Constant, the Mass of the Higgs and Elementary Black Holes,” Chaos, Solitons & Fractals, Vol. 37, No. 2, 2008, pp. 346-359. doi:10.1016/j.chaos.2007.10.021
[68] M. S. El Naschie, “Quantum E-Infinity Field Theoretical Gravitational Constant,” International Journal of Nonlinear Sciences and Numerical Simulation, Vol. 8, No. 3, 2007, pp. 496-474.
[69] M. S. El Naschie, “Towards a Quantum Golden Field theory,” International Journal of Nonlinear Sciences and Numerical Simulation, Vol. 8, No. 4, 2007, pp. 477-482. doi:10.1515/IJNSNS.2007.8.4.477