On Over-Relaxed Proximal Point Algorithms for Generalized Nonlinear Operator Equation with (A,η,m)-Monotonicity Framework

Show more

References

[1] R. P. Agarwal and R. U. Verma, “Role of relative A-Maximal Monotonicity in Overrelaxed Proximal Point Algorithm with Applications,” Journal of Optimization Theory and Applications, Vol. 143, No. 1, 2009, pp. 1-15.
doi:10.1007/s10957-009-9554-z

[2] R. P. Agarwal and R. U. Verma, “General Implicit Variational Inclusion Problems Based on A-Maximal (m)-Relaxed Monotonicity (AMRM) Frameworks,” Applied Mathematics and Computation, Vol. 215, No. 1, 2009, pp. 367-379. doi:10.1016/j.amc.2009.04.078

[3] R. P. Agarwal and R. U. Verma, “General System of (A,η)-Maximal Relaxed Monotone Variational Inclusion Problems Based on Generalized Hybrid Algorithms,” Communications in Nonlinear Science and Numerical Simulation, Vol. 15, No. 2, 2010, pp. 238-251.
doi:10.1016/j.cnsns.2009.03.037

[4] H. Y. Lan, “A Class of Nonlinear (A,η)-Monotone Operator Inclusion Problems with Relaxed Cocoercive Mappings,” Advances in Nonlinear Variational Inequalities, Vol. 9, No. 2, 2006, pp. 1-11.

[5] H. Y. Lan, “Approximation Solvability of Nonlinear Random (A,η)-Resolvent Operator Equations with Random Relaxed Cocoercive Operators,” Computers & Mathematics with Applications, Vol. 57, No. 4, 2009, pp. 624-632. doi:10.1016/j.camwa.2008.09.036

[6] H. Y. Lan, “Sensitivity Analysis for Generalized Nonlinear Parametric (A,η,m)-Maximal Monotone Operator Inclusion Systems with Relaxed Cocoercive Type Operators,” Nonlinear Analysis: Theory, Methods & Applications, Vol. 74, No. 2, 2011, pp. 386-395.

[7] R. U. Verma, “Generalized Over-Relaxed Proximal Algorithm Based on A-Maximal Monotonicity Framework and Applications to Inclusion Problems,” Mathematical and Computer Modelling, Vol. 49, No. 7-8, 2009, pp. 1587-1594.

[8] R. U. Verma, “General Over-Relaxed Proximal Point Algorithm Involving A-Maximal Relaxed Monotone Mappings with Applications,” Nonlinear Analysis: Theory, Methods & Applications, Vol. 71, No. 12, 2009, pp. e1461-e1472. doi:10.1016/j.na.2009.01.184

[9] R. U. Verma, “A Hybrid Proximal Point Algorithm Based on the (A,η)-Maximal Monotonicity Framework,” Applied Mathematics Letters, Vol. 21, No. 2, 2008, pp. 142-147.
doi:10.1016/j.aml.2007.02.017

[10] R. U. Verma, “A General Framework for the Over-Relaxed A-Proximal Point Algorithm and Applications to Inclusion Problems,” Applied Mathematics Letters, Vol. 22, No. 5, 2009, pp. 698-703.
doi:10.1016/j.aml.2008.05.001

[11] M. A. Hanson, “On Sufficiency of Kuhn-Tucker Conditions,” Journal of Mathematical Analysis and Applications, Vol. 80, No. 2, 1981, pp. 545-550.
doi:10.1016/0022-247X(81)90123-2

[12] M. Soleimani-Damaneh, “Generalized Invexity in Separable Hilbert Spaces,” Topology, Vol. 48, No. 2-4, 2009, pp. 66-79. doi:10.1016/j.top.2009.11.004

[13] M. Soleimani-Damaneh, “Infinite (Semi-Infinite) Problems to Characterize the Optimality of Nonlinear Optimization Problems,” European Journal of Operational Research, Vol. 188, No. 1, 2008, pp. 49-56.
doi:10.1016/j.ejor.2007.04.026