Back
 JQIS  Vol.2 No.3 , September 2012
A Comparative Study on Correlation Measures of Pure Bipartite States through Incomparability
Abstract: The entanglement of a pure bipartite state is uniquely measured by the von-Neumann entropy of its reduced density matrices. Though it cannot specify all the non-local characteristics of pure entangled states. It was proven that for every possible value of entanglement of a bipartite system, there exists an infinite number of equally entangled pure states, not comparable(satisfies Nielsen’s criteria) to each other. In this work, we investigate other correlation measures of pure bipartite states that are able to differentiate the quantum correlations of the states with entropy of entanglement. In Schmidt rank 3, we consider the whole set of states having same entanglement and compare how minutely such states can be distinguished by other correlation measures. Then for different values of entanglement we compare the sets of states belonging to the same entanglement and also investigate the graphs of different correlation measures. We extend our search to Schmidt rank 4 and 5 also.
Cite this paper: A. Bhar, I. Chattopadhyay and D. Sarkar, "A Comparative Study on Correlation Measures of Pure Bipartite States through Incomparability," Journal of Quantum Information Science, Vol. 2 No. 3, 2012, pp. 90-101. doi: 10.4236/jqis.2012.23015.
References

[1]   J. S. Bell, “On the Einstein Podolsky Rosen Paradox,” Physics, Vol. 1, No. 3, 1964, pp. 195-200.

[2]   C. H. Bennett and G. Brassard, “Quantum Cryptography: Public Key Distribution and Coin Tossing,”Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, 10-12 December, 1984, pp.175-179.

[3]   C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres and W. K. Wootters, “Teleporting an Unknown Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels,” Physical Review Letters, Vol. 70, No. 13, 1993, p. 1895. doi:10.1103/PhysRevLett.70.1895

[4]   C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin and W. K. Wootters, “Purification of Noisy Entanglement and Faithful Teleportation via Noisy Channels,” Physical Review Letters, Vol. 76, No. 5, 1996, pp. 722-755. doi:10.1103/PhysRevLett.76.722

[5]   C. H. Bennett, H. J. Bernstein, S. Popescu and B. Schumacher, “Concentrating partial entanglement by Local Operations,” Physical Review A, Vol. 53, No. 4, 1996, pp. 2046-2052. doi:10.1103/PhysRevA.53.2046

[6]   S. Popescu and D. Rohrlich, “Thermodynamics and the Measure of Entanglement,” Physical Review A(R), Vol. 56, No. 5, 1997, pp. 3319-3322.

[7]   S. Virmani and M. B. Plenio, “Ordering States with Entanglement Measures,” Physical Review Letters, Vol. 268, No. 1-2, 2000, pp. 31-34. doi:10.1016/S0375-9601(00)00157-2

[8]   F. Verstraete, K. Audenaert, J. Dehaene and B. D. Moor, “A Comparison of the Entanglement Measures Negativity and Concurrence,” Journal of Physics A: Mathematical and General, Vol. 34, No. 47, 2001, p. 10327. doi:10.1088/0305-4470/34/47/329

[9]   H. K. Lo and S. Popescu, “Concentrating Entanglement by Local Actions: Beyond Mean Values,” Physical Review A, Vol. 63, No. 2, 2001, pp. doi:10.1103/PhysRevA.63.022301

[10]   V. Vedral and M. B. Plenio, “Entanglement Measures and Purification Procedures,” Physical Review A, Vol. 57, No. 3, 1998, pp. 1619-1633. doi:10.1103/PhysRevA.57.1619

[11]   V. Vedral, M. B. Plenio, M. A. Rippin and P. L. Night, “Quantifying Entanglement,” Physical Review Letters, Vol. 78, No. 12, 1997, pp. 2275. doi:10.1103/PhysRevLett.78.2275

[12]   A. Miranowicz and A. Grudka, “Ordering Two-Qubit States with Concurrence and Negativity,” Physical Review A, Vol. 70, No. 3, 2004, pp. 032326. doi:10.1103/PhysRevA.70.032326

[13]   M. A. Nielsen, “Conditions for a Class of Entanglement Transformations,” Physical Review Letters, Vol. 83, No. 2, 1999, pp. 436-439. doi:10.1103/PhysRevLett.83.436

[14]   K. Zyczkowski, “Volume of the Set of Separable States II,” Physical Review A, Vol. 60, No. 5, 1999, pp. 3496-3507. doi:10.1103/PhysRevA.60.3496

[15]   G. Vidal, “Entanglement Monotones,” Journal of Modern Optics, Vol. 47, No. 2-3, 2000, pp. 355-376.

[16]   M. A. Nielsen, “Lecture Notes,” Department of Physics, Univesity of Queensland, Queensland, 2002

[17]   M. B. Plenio and S. Virmani, “An Introduction to Entanglement Measures,” Quantum Information & Computation, Vol. 7, No. 1, 2007, pp. 1-51.

[18]   A. Peres, “Seperability Criteria for Density Matrices,” Physical Review Letters, Vol. 77, No. 8, 1996, pp. 1413-1415. doi:10.1103/PhysRevLett.77.1413

[19]   M. Horodecki, P. Horodecki and R. Horodecki, “Separability of Mixed States: Necessary and Sufficient Conditions,” Physical Review A, Vol. 223, No. 1-2, 1996, pp. 1-8. doi:10.1103/PhysRevLett.84.2014

[20]   M. Horodecki, P. Horodecki and R. Horodecki, “Limits for Entanglement Measures,” Physical Review Letters, Vol. 84, No. 9, 2000, pp. 2014-2017. doi:10.1103/PhysRevLett.84.2014

[21]   I. Chattopadhyay and D. Sarkar, “Character of Locally Inequivalent Classes of States and Entropy of Entanglement,” Physical Review A(R), Vol. 77, No. 5, 2008, p. 050305.

[22]   I. Chattopadhyay and D. Sarkar, “General Classes of Impossible Operations through the Existence of Incomparable states,” Quantum Information and Computation, Vol. 7, No. 4, 2007, pp. 392-400 doi:10.1103/PhysRevA.73.044303

[23]   I. Chattopadhyay and D. Sarkar, “Entanglement of Formation is non-monotonic with Concurrence: A Simple Proof,” Quantum Information Processing, Vol. 7, No. 6, 2008, pp. 243-249. doi:10.1007/s11128-008-0085-6

[24]   W. K. Wootters, “Entanglement of Formation of an Arbitrary State of Two Qubits” Physical Review Letters, Vol. 80, No. 10, 1998, pp. 2245-2248. doi:10.1103/PhysRevLett.80.2245

[25]   W. K. Wootters, “Entanglement of Formation and Concurrence,” Quantum Information & Computation, Vol. 1, No. 1, 2001, pp. 27-44.

[26]   K. Chen, S. Albeverio and S. M. Fei, “Concurrence of Arbitrary Dimensional Bipartite Quantum States,” Physical Review Letters, Vol. 95, No. 4, 2005, p. 040504. doi:10.1103/PhysRevLett.95.040504

[27]   M. B. Plenio, “Logarithmic Negativity: A Full Entanglement Monotone That Is Not Convex,” Physical Review Letters, Vol. 95, No. 9, 2005, p. 090503. doi:10.1103/PhysRevLett.95.090503

[28]   G. Vidal and R. F. Werner, “Computable Measure of Entanglement,” Physical Review A, Vol. 65, No. 3, 2002, p.032314. doi:10.1103/PhysRevA.65.032314

[29]   A. Re′nyi, “On the Notion of Entropy and Its Role in Probability Theory,” Proceedings of the forth Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, Berkeley, Vol. 1, 1961, pp. 547-561.

[30]   S. M. Giampaolo and F. Elluminati, “Characterization of Separability and Entanglement in (2 × D)-and (3 × D)-Dimensional Systems by Single-Qubit and Single-Qutrit Unitary Transformations,” Physical Review A, Vol. 76, No. 4, 2007, p. 042301. doi:10.1103/PhysRevA.76.042301

[31]   H. Fan, K. Matsumoto and H. Imai, “Quantify Entanglement by Concurrence Hierarchy,” Journal of Physics A: Mathematical and General, Vol. 36, No. 14, 2003, p. 4407. doi:10.1088/0305-4470/36/14/316

[32]   G. Vidal and R. Tarrach, “Robustness of Entanglement,” Physical Review A, Vol. 59, No. 1, 1999, pp. 141-155 doi:10.1103/PhysRevA.59.141

[33]   K. Zyczkowski and I. Bengtsson, “Relativity of Pure States Entanglement,” Annals of Physics, Vol. 295, No. 2, 2002, pp. 115-135. doi:10.1006/aphy.2001.6201

[34]   C. Writte and M. Trucks, “A New Entanglement Measure Induced by the Hilbert-Schmidt Norms,” Physics Letters A, Vol. 14, No. 1-2, 1999, pp.14-20.

[35]   G. Vidal, D. Jonathan and M. A. Nielsen, “Approximate Transformations and Robust Manipulation of Bipartite Pure-State Entanglement,” Physical Review A, Vol. 62, No. 1, 2000, p. 012304. doi:10.1103/PhysRevA.62.012304

 
 
Top