JQIS  Vol.2 No.3 , September 2012
Quantum Image Searching Based on Probability Distributions
Abstract: A quantum image searching method is proposed based on the probability distributions of the readouts from the quantum measurements. It is achieved by using low computational resources which are only a single Hadamard gate combined with m + 1 quantum measurement operations. To validate the proposed method, a simulation experiment is used where the image with the highest similarity value of 0.93 to the particular test image is retrieved as the search result from 4 × 4 binary image database. The proposal provides a basic step for designing a search engine on quantum computing devices where the image in the database is retrieved based on its similarity to the test image.
Cite this paper: F. Yan, A. Iliyasu, C. Fatichah, M. Tangel, J. Betancourt, F. Dong and K. Hirota, "Quantum Image Searching Based on Probability Distributions," Journal of Quantum Information Science, Vol. 2 No. 3, 2012, pp. 55-60. doi: 10.4236/jqis.2012.23010.

[1]   S. E. Venegas-Andraca and S. Bose, “Storing, Processing and Retrieving an Image Using Quantum Mechanics,” Proceedings of SPIE Conference of Quantum Information and Computation, Vol. 5105, 2003, pp. 134-147.

[2]   J. I. Latorre, “Image Compression and Entanglement,” arXiv: quant-ph/0510031, 2005.

[3]   P. Q. Le, A. M. Iliyasu, F. Dong and K. Hirota, “A Flexible Representation and Invertible Transformations for Images on Quantum Computers,” New Advances in Intelligent Signal Processing, Book Series: Studies in Computational Intelligence, Vol. 372, 2011, pp. 179-202. doi:10.1007/978-3-642-11739-8_9

[4]   A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, et al., “Elementary Gates for Quantum Computation,” Physical Review A, Vol. 52, No. 5, 1995, pp. 3457-3467. doi:10.1103/PhysRevA.52.3457

[5]   M. Nielsen and I. Chuang, “Quantum Computation and Quantum Information,” Cambridge University Press, New York, 2000. doi:10.2277/0521635039

[6]   P. Q. Le, A. M. Iliyasu, F. Dong and K. Hirota, “Fast Geometric Transformations on Quantum Images,” IAENG International Journal of Applied Mathematics, Vol. 40, No. 3, 2010, pp. 113-123.

[7]   P. Q. Le, A. M. Iliyasu, F. Dong and K. Hirota, “Efficient Color Transformations on Quantum Image,” Journal of formatics, Vol. 15, No. 6, 2011, pp. 698-706.

[8]   F. Yan, P. Q. Le, A. M. Iliyasu, B. Sun, J. A. Garcia, F. Dong and K. Hirota, “Assessing the Similarity of Quantum Images Based on Probability Measurements,” 2012 IEEE World Congress on Computational Intelligence, Brisbane, 10-15 June 2012, pp. 1-6. doi:10.1109/CEC.2012.6256418

[9]   R. S. Bennink, S. J. Bentley and R. W. Boyd, “Quantum and Classical Coincidence Imaging,” Physical Review Letters, Vol. 92, No. 6, 2004, pp. 1-4. doi:10.1103/PhysRevLett.92.069901

[10]   A. M. Iliyasu, P. Q. Le, F. Dong and K. Hirota, “A Framework for Representing and Producing Movies on Quantum Computers,” International Journal of Quantum Information, Vol. 9, No. 6, 2011, pp. 1459-1497. doi:10.1142/S0219749911008015

[11]   L. Grover, “Quantum Mechanics Helps in Searching for a Needle in a Haystack,” Physical Review Letters, Vol. 79, No. 2, 1997, pp. 325-328. doi:10.1103/PhysRevLett.79.325

[12]   M. Inoue, “On the Need for Annotation-Based Image Retrieval,” Proceedings of the ACM-SIGIR Workshop on Information Retrieval in Context, Sheffield, 29 July 2004, pp. 44-46.

[13]   A. M. Iliyasu, P. Q. Le, F. Dong and K. Hirota, “Water-Marking and Authentication of Quantum Images Based Restricted Geometric Transformations,” Information Sciences, Vol. 186, No. 1, 2012, pp. 126-149. doi:10.1016/j.ins.2011.09.028