A Hybrid Clonal Selection for the Single Row Facility Layout Problem with Unequal Dimensions

Show more

References

[1] W. Liu and A. Vannelli, “Generating Lower Bounds for the Linear Arrangement Problem,” Discrete Applied Mathematics, Vol. 59, No. 2, 1995, pp. 137-151.
doi:10.1016/0166-218X(93)E0168-X

[2] J. E. Mitchell and B. Borchers, “Solving Linear Ordering Problems with a Combined Interior Point/Simplex Cutting Plane Algorithm,” High Performance Optimization, Vol. 33, 2000, pp. 349-366.

[3] E. Cela, “The Quadratic Assignment Problem, Theory and Algorithms,” Kluwer Academic Publishers, Dordrecht, 1998.

[4] S. S. Heragu and A. Kusiak, “Machine Layout Problem in Flexible Manufacturing Systems,” Operations Research, Vol. 36, No. 2, 1988, pp. 258-268.
doi:10.1287/opre.36.2.258

[5] M. R. Garey and D. S. Johnson, “Computers and Intractability: An Introduction to the Theory of NP-Completeness,” Freeman, New York, 1979.

[6] D. M. Simmons, “One-Dimensional Space AllocationAn ordering algorithm,” Operations Research, Vol. 17, No. 5, 1969, pp. 812-826.

[7] D. M. Simmons, “A Further Note on One-Dimensional Space Allocation,” Operations Research, Vol. 19, No. 1, 1971, p. 249. doi:10.1287/opre.19.1.249

[8] R. M. Karp and M. Held, “Finite-State Processes and Dynamic Programming,” SIAM Journal of Applied Mathematics, Vol. 15, No. 3, 1967, pp. 693-718.

[9] J. C. Picard and M. Queyranne, “On the One-Dimensional Space Allocation Problem,” Operations Research, Vol. 29, No. 2, 1981, pp. 371-391. doi:10.1287/opre.29.2.371

[10] S. S. Heragu and A. Kusiak, “Efficient Models for the Facility Layout Problem,” European Journal of Operational Research, Vol. 53, No. 1, 1991, pp. 1-13.

[11] R. F. Love and J. Y. Wong, “On Solving a One-Dimensional Space Allocation Problem with Integer Programming,” INFOR, Vol. 14, 1976, pp. 139-143.

[12] A. R. S. Amaral, “On the Exact Solution of a Facility Layout Problem,” European Journal of Operational Research, Vol. 173, No. 2, 2006, pp. 508-518.

[13] A. R. S. Amaral, “An Exact Approach for the One-Dimensional Facility Layout Problem,” Operations Research, Vol. 56, No. 4, 2008, pp. 1026-1033.
doi:10.1287/opre.1080.0548

[14] A. Amaral, “A New Lower Bound for the Single Row Facility Layout Problem,” Discrete Applied Mathematics, Vol. 157, No. 1, 2009, pp. 183-190.
doi:10.1016/j.dam.2008.06.002

[15] G. Suresh and S. Sahu, “Multiobjective Facility Layout Using Simulated Annealing,” International Journal of Production Economics, Vol. 32, No. 2, 1993, pp. 239-254.
doi:10.1016/0925-5273(93)90071-R

[16] F. Neghabat, “An Efficient Equipment Layout Algorithm,” Operations Research, Vol. 22, No. 3, 1974, pp. 622-628.
doi:10.1287/opre.22.3.622

[17] Z. Drezner, “A Heuristic Procedure for the Layout of a Large Number of Facilities,” Management Science, Vol. 7, No. 33, 1987, pp. 907-915. doi:10.1287/mnsc.33.7.907

[18] S. S. Heragu and A. S. Alfa, “Experimental Analysis of Simulated Annealing Based Algorithms for the Facility Layout Problem,” European Journal of Operational Research, Vol. 57, No. 2, 1992, pp. 190-202.
doi:10.1016/0377-2217(92)90042-8

[19] K. R. Kumar, G. C. Hadjinicola and T. L. Lin, “A Heuristic Procedure for the Single Row Facility Layout Problem,” European Journal of Operational Research, Vol. 87, No. 1, 1995, 65-73. doi:10.1016/0377-2217(94)00062-H

[20] M. Braglia, “Optimization of a Simulated-Annealing-Based Heuristic for Single Row Machine Layout Problem by Genetic Algorithm,” International Transactions in Operational Research, Vol. 1, No. 3, 1996, pp. 37-49.
doi:10.1111/j.1475-3995.1996.tb00034.x

[21] M. Solimanpur, P. Vrat and R. Shankar, “An Ant Algorithm for the Single Row Layout Problem in Flexible Manufacturing Systems,” Computers & Operations Research, Vol. 32, No. 3, 2005, pp. 583-598.
doi:10.1016/j.cor.2003.08.005

[22] M. F. Anjos and A. Vannelli, “Computing Globally Optimal Solutions for Single-Row Layout Problems Using Semidefinite Programming and Cutting Planes,” INFORMS Journal on Computing, Vol. 20, No. 4, 2008, pp. 611-617.
doi:10.1287/ijoc.1080.0270

[23] M. F. Anjos and C. Kong, “FLP database,” 2007.
http://flplib.uwaterloo.ca

[24] P. Hungerlander and F. Rendl, “A Computational Study for the Single-Row Facility Layout Problem,” 2011.
http://www.optimization-nline.org/DBFILE/2011/05/ 3029.pdf.

[25] M. F. Anjos, A. Kennings and A. Vannelli, “A Semidefinite Optimization Approach for the Single-Row Layout Problem with Unequal Dimensions,” Discrete Optimization, Vol. 2, No. 2, 2005, pp. 113-122.
doi:10.1016/j.disopt.2005.03.001

[26] S. Kumar, et al., “Scatter Search Algorithm for Single Row Layout Problem in FMS,” Advances in Production Engineering and Management, Vol. 3, No. 4, 2008, pp. 193-204.

[27] Y. T. Teo and S. G. Ponnambalam, “A Hybrid ACO/PSO Heuristic to Solve Single Row Layout Problem,” 4th IEEE Conference on Automation Science and Engineering, Washington DC, 23-26 August 2008.

[28] M. T. Lin, “The Single-Row Machine Layout Problem in Apparel Manufacturing by Hierarchical Order-Based Genetic Algorithm,” International Journal of Clothing Science and Technology, Vol. 21, No. 1, 2009, pp. 31-43.
doi:10.1108/09556220910923737

[29] H. Samarghandi and K. Eshghi, “An Efficient Tabu Algorithm for the Single Row Facility Layout Problem,” European Journal of Operational Research, Vol. 205, No. 1, 2010, pp. 98-105. doi:10.1016/j.ejor.2009.11.034

[30] D. Datta, A. R. Amaral and J. R. Figueira, “Single Row Facility Layout Problem Using a Permutation-Based Genetic Algorithm,” European Journal of Operational Research, Vol. 213, No. 2, 2011, pp. 388-394.

[31] D. Dasgupta, “An Overview of Artificial Immune Systems and Their Applications,” In: D. Dasgupta, Ed., Artificial Immune Systems and Their Applications, Springer-Verlag, Berlin, 1998, pp. 3-18.

[32] O. Engin and A. Doyen, “Artificial Immune Systems and Applications in Industrial Problems,” Gazi University Journal of Science, Vol. 17, No. 1, 2004, pp. 71-84.

[33] X. Wang, “Clonal Selection Algorithm in Power Filter Optimization,” Proceedings of the IEEE Mid-Summer Workshop on Soft Computing in Industrial Applications, Espoo, 28-30 June 2005, pp. 122-127.

[34] S. Kirkpatrick, C. D. Gelatt, Jr. and M. P. Vecchi, “Optimization by Simulated Annealing,” Science, Vol. 220, No. 4598, 1983, pp. 671-680.