Explicit Inversion for Two Brownian-Type Matrices

Show more

References

[1] R. J. Herbold, “A Generalization of a Class of Test Matrices,” Mathematics of Computation, Vol. 23, 1969, pp. 823-826. doi:10.1090/S0025-5718-1969-0258259-0

[2] F. N. Valvi, “Explicit Presentation of the Inverses of Some Types of Matrices,” IMA Journal of Applied Mathematics, Vol. 19, No. 1, 1977, pp. 107-117.
doi:10.1093/imamat/19.1.107

[3] M. J. C. Gover and S. Barnett, “Brownian Matrices: Properties and Extensions,” International Journal of Systems Science, Vol. 17, No. 2, 1986, pp. 381-386.
doi:10.1080/00207728608926813

[4] B. Picinbono, “Fast Algorithms for Brownian Matrices,” IEEE Transactions on Acoustics, Speech and Signal Processing, Vol. 31, No. 2, 1983, pp. 512-514.
doi:10.1109/TASSP.1983.1164078

[5] G. Carayannis, N. Kalouptsidis and D. G. Manolakis, “Fast Recursive Algorithms for a Class of Linear Equations,” IEEE Transactions on Acoustics, Speech and Signal Processing, Vol. 30, No. 2, 1982, pp. 227-239.
doi:10.1109/TASSP.1982.1163876

[6] H. W. Milnes, “A Note Concerning the Properties of a Certain Class of Test Matrices,” Mathematics of Computation, Vol. 22, 1968, pp. 827-832.
doi:10.1090/S0025-5718-1968-0239743-1

[7] R. T. Gregory and D. L. Karney, “A Collection of Matrices for Testing Computational Algorithms,” Wiley-Interscience, London, 1969.