MSA  Vol.3 No.9 , September 2012
Characterization and Electromagnetic Studies on NiZn and NiCuZn Ferrites Prepared by Microwave Sintering Technique
ABSTRACT
The low-temperature sintered NiZn and NiCuZn ferrites with the composition of Ni0.40Zn0.60Fe2O4 and Ni0.35Cu0.05Zn0.60 Fe2O4 were respectively synthesized by the microwave sintering method. These powders were calcined, compacted and sintered at 950℃ for 30 min. X-ray diffraction (XRD) patterns of the samples indicate the formation of single-phase cubic spinel structure. The grain size was estimated from SEM images which increase with CuO addition. The X-ray density is higher than the bulk density in both the ferrites. The temperature variation of the initial permeability of these samples was carried out from 30℃ to 250℃. The NiCuZn ferrite had higher initial permeability than that of the NiZn ferrite, which could be attributed to the microstructure. Saturation magnetization increases from 40 emug/g (NiZn) to 47 emug/g (NiCuZn). The dielectric constant and dielectric loss tangent of NiZn and NiCuZn ferrite samples decreases with increase in frequency exhibiting normal ferrimagnetic behavior. The NiCuZn ferrite had better electro- magnetic properties than the NiZn ferrite.

Cite this paper
M. Reddy, I. Kim, D. Yoo, W. Madhuri, N. Reddy, K. Kumar and R. Reddy, "Characterization and Electromagnetic Studies on NiZn and NiCuZn Ferrites Prepared by Microwave Sintering Technique," Materials Sciences and Applications, Vol. 3 No. 9, 2012, pp. 628-632. doi: 10.4236/msa.2012.39091.
References
[1]   P. K. Patro, A. R. Kulkarni, S. M. Gupta and C. S. Harendranath, “Improved Microstructure, Dielectric and Fer- roelectric Properties of Microwave-Sintered Sr0.5Ba0.5Nb2O6,” Physica B: Condensed Matter, Vol. 400, No. 1-2, 2007, pp. 237-242.doi:10.1016/j.physb.2007.07.022

[2]   Z. Xie, J. Yang, X. Huang and Y. Huang, “Microwave Processing and Properties of Ceramics with Different Loss,” Journal of European Ceramic Society, Vol. 19, No. 3, 1999, pp. 381-387. doi:10.1016/S0955-2219(98)00203-9

[3]   V. R. K. Murty and B. Vishwanathan, “Ferrites Materials: Science and Technology,” Narosa Publishing House, Mumbai, 1990.

[4]   Y. Matsuo, M. Inagaki, T. Tomozawa and F. Nakao, “High Performance NiZn Ferrite,” IEEE Transactions on Magnetics, Vol. 37, No. 4, 2001, pp. 2359-2361.doi:10.1109/20.951172

[5]   K. Kondo, T. Chiba, S. Yamada and E. Otsuki, “Analysis of Power Loss in Ni-Zn Ferrites,” Journal of Applied Physics, Vol. 87, No. 9, 2000, pp. 6229-6231.doi:10.1063/1.372663

[6]   A. C. F. M. Costa, E. Tortella, M. R. Morelli and R. H. G. A. Kiminami, “Synthesis, Microstructure and Magnetic Properties of Ni-Zn Ferrites,” Journal of Magnetism and Magnetic Materials, Vol. 256, No. 1-3, 2003, pp. 174-182.doi:10.1016/S0304-8853(02)00449-3

[7]   S. R. Murthy, “Low Temperature Sintering of NiCuZn Ferrite and Its Electrical, Magnetic and Elastic Properties,” Journal of Materials Science Letters, Vol. 21, No. 8, 2002, pp. 657-660. doi:10.1023/A:1015608625798

[8]   P. A. Jadhav, R. S. Devan, Y. D. Kolekar and B. K. Chougule, “Structural, Electrical and Magnetic Characterizations of Ni-Cu-Zn Ferrite Synthesized by Citrate Precursor Method,” Journal of Physics and Chemistry of Solids, Vol. 70, No. 2, 2009, pp. 396-400.doi:10.1016/j.jpcs.2008.11.019

[9]   J. C. Aphesteguy, A. Damiani, D. D. Giovanni and S. E. Jacobo, “Microwave-Absorbing Characteristics of Epoxy Resin Composites Containing Nanoparticles of NiZn- and NiCuZn-Ferrites,” Physica B: Condensed Matter, Vol. 404, No. 18, 2009, pp. 2713-2716.doi:10.1016/j.physb.2009.06.065

[10]   H. Su, H. Zhang, X. Tang, Y. Jing and Y. Liu, “Effects of Composition and Sintering Temperature on Properties of NiZn and NiCuZn Ferrites,” Journal of Magnetic Materials, Vol. 310, No. 1, 2007, pp. 17-21. doi:10.1016/j.jmmm.2006.07.022

[11]   M. Penchal Reddy, W. Madhuri, N. Ramamanohar Reddy, K. V. Siva Kumar, V. R. K. Murthy and R. Ramakrishna Reddy, “Magnetic Properties of Ni-Zn Ferrites Prepared by Microwave Sintering Method,” Journal of Electroceramics, Vol. 28, No. 28, 2012, pp. 1-9.

[12]   C. Y. Tsay, K. S. Liu and I. N. Lin, “Microwave Sintering of (Bi0.75Ca1.2Y1.05)(V0.6Fe4.4)O12 Microwave Magnetic Materials,” Journal of the European Ceramic Society, Vol. 24, No. 6, 2004, pp. 1057-1061. doi:10.1016/S0955-2219(03)00401-1

[13]   M. C. Dimri, A. Verma, S. Kashyap, D. C. Dube, O. P. Thakur and Ch. Prakash, “Structural, Dielectric and Magnetic Properties of NiCuZn Ferrite Grown by Citrate Precursor Method,” Materials Science and Engineering B, Vol. 133, No. 1-3, 2006, pp. 42-48.doi:10.1016/j.mseb.2006.04.043

[14]   E. Rezlescu, L. Sachelarie, P. D. Popa and N. Rezlescu, “Effect of Substitution of Divalent Ions on the Electrical and Magnetic Properties of Ni-Zn-Me Ferrites,” IEEE Transactions on Magnetics, Vol. 36, No. 6, 2000, pp. 2841-2846. doi:10.1109/20.914348

[15]   K. C. Maxwell, “Electricity and Magnetism,” Oxford University Press, London, Vol. 33, 1873, p. 328.

[16]   K. W. Wagner, “Zur Theorie der Unvolkommenen Dielektrika,” American Physics, Vol. 40, 1913, p. 817.

[17]   C. G. Koops, “On the Dispersion of Resistivity and Dielectric Constant of Some Semiconductors at Audio Frequencies,” Physical Review, Vol. 83, 1953, pp. 121-125.doi:10.1103/PhysRev.83.121

[18]   K. Katsmi, S. Mamoru, I. Tatrsuo and I. Katsuya, “Dielectric Behavior of Water Molecules Adsorbed on Iron(III) Oxide Hydroxides,” Bulletin of the Chemical Society of Japan, Vol. 48, No. 6, 1975, pp. 1764-1767. doi:10.1246/bcsj.48.1764

[19]   P. Yadoji, R. Peelamedu, D. Agarwal and R. Roy, “Microwave Sintering of Ni-Zn Ferrites: Comparison with Conventional Sintering,” Materials Science and Engineering B, Vol. 98, No. 3, 2003, pp. 269-278. doi:10.1016/S0921-5107(03)00063-1

[20]   D. R. Patil and B. K. Chougule, “Effect of Copper Substitution on Electrical and Magnetic Properties of NiFe2O4 ferrite,” Materials Chemistry and Physics, Vol. 117, No. 1, 2009, pp. 35-40. doi:10.1016/j.matchemphys.2008.12.034

[21]   N. Rezlescue and E. Rezlescue, “Dielectric Properties of Copper Containing Ferrites,” Physica Status Solid (a), Vol. 23, No. 2, 1974, pp. 575-582.doi:10.1002/pssa.2210230229

 
 
Top