AJPS  Vol.3 No.9 , September 2012
Effective Procedure for Development of EST-SSR Markers Using cDNA Library
Abstract: The present study was conducted to develop EST-SSR markers using the cDNA library from rice plant. Total RNA extracted from the leaves of brown plant hopper resistance gene originated from a rice cultivar “Cheongcheong” and sensitive rice cultivar “Nakdong” were used to synthesize a cDNA library. As a result of analyzing the cDNA library, the 17 EST-SSR primer sets were developed. This study enables to provide effective marker assisted selection (MAS) methods on the selection of white-backed planthopper resistance gene originated from a rice plant more simply, quickly and precisely. Furthermore, using this marker’s advantage of deriving from cDNA, it is possible to identify the white-backed planthopper resistance gene. In addition, this study introduces a technique for construction of a cDNA library safely without using radioactivity.
Cite this paper: K. Kim, H. Park, J. Sohn and K. Kim, "Effective Procedure for Development of EST-SSR Markers Using cDNA Library," American Journal of Plant Sciences, Vol. 3 No. 9, 2012, pp. 1322-1327. doi: 10.4236/ajps.2012.39159.

[1]   P. Carninci, C. Kvam, A. Kitamura, T. Ohsumi,Y. Okazaki, M. Tioh, M. Kamiya, K. Shibata, N. Sasaki, M. Izawa, M. Muramatsu, Y. Hayashizaki and C. Schneider, “High-Efficiency Full-Length cDNA Cloning by Biotinylated CAP Trapper,” Genomics, Vol. 37, No. 3, 1996, pp. 327-336. doi:10.1006/geno.1996.0567

[2]   I. Edery, L. L. Chu, N. Sonenberg andJ. Pelletier, “An Efficient Strategy to Isolate Full-Length cDNAs Based on an mRNA Retension Procedure (CAPture),” Molecular and Cellular Biology, Vol. 15, No. 6, 1995, pp. 3363-3371.

[3]   Y. Furuichiand K. Miura, “A Blocked Structure at the 5’ Terminus of mRNA from Cytoplasmic Polyhedrosis Virus,” Nature, Vol. 253, No. 5490, 1975, pp.374-375. doi:10.1038/253374a0

[4]   S. Kato, S. Sekine, S. W. Oh, N. S. Kim, Y. Umezawa, N. Abe, M. Yokoyama-Kobayashi and T. Aoki, “Construction of a Human Fulllength cDNA Bank,” Gene, Vol. 150, No. 2, 1994, pp. 243-250. doi:10.1016/0378-1119(94)90433-2

[5]   K. Maruyama and S. Sugano, “Oligo-Capping: A Simple Method to Replace the Cap Structure of Eucaryotic mRNAs with Oligoribonucleotides,” Gene, Vol. 138, No. 1-2, 1994, pp. 171-174. doi:10.1016/0378-1119(94)90802-8

[6]   Y. Y. Zhu, E. M. Machleder, A. Chenchik, R. Li and P. D. Siebert, “Reverse Transcriptase Template Switching: A SMARTTM Approach for Full-Length cDNA Library Construction,” BioTechniques, Vol. 30, No. 4, 2001, pp. 892-897.

[7]   J. H. Seo, K. M. Kim, S. M. Kim and J. K. Sohn, “Development of RAPD Marker Related to Brown Planthopper Resistance Gene Derived from Rice Cultivar, Cheongcheongbyeo,” Korean Journal of Crop Science, Vol. 50, No. 6, 2005, pp. 453-456.

[8]   S. M. Kim, S. J. Yang and J. K. Sohn, “Development of a DNA Marker for Selection of Resistant Plants to Brown Planthopper (BPH) in Rice,” Korean Journal of Breeding, Vol. 35, No. 5, 2003, pp. 277-282.

[9]   U. S. Yeo, D. Y. Kwak, S. J. Lim, W. G. Ha, H. J. Cho and J. K. Sohn, “Relationship between Agronomic Traits and Resistance to Brown Planthopper in Japonica RIL Population,” Korean Journal of Breeding, Vol. 34, No. 3, 2002, pp. 148-152.

[10]   H. Hirabayashi and O. Tsugufumi, “RFLP Mapping of Bph 1 (Brown Planthopper Resistance Gene) in Rice,” Breeding Science, Vol. 45, No. 3, 1995, pp. 369-371.

[11]   Z. Huang, G. He, L. Shu, X. Li and Q. Zhang, “Identification and Mapping of Two Brown Plantopper Resistance Genes in Rice,” TAG Theoretical and Applied Genetetics, Vol. 102, No. 6-7, 2001, pp. 929-934. doi:10.1007/s001220000455

[12]   K. K. Jena, I. C. Pasalu, Y. K. Rao, Y. Varalaxmi, K. Krishnaiah, G. S. Khush and G. Kochert, “Molecular Tagging of a Gene for Resistance to Brown Planthopper in Rice (Oryza sativa L.),” Euphytica, Vol. 129, No. 1, 2002, pp. 81-88. doi:10.1023/A:1021590025240

[13]   K. Murata, M. Fujiware, C. Kaneda, S. Takumi, N. Mori and C. Nakamura, “RFLP Mapping of a Brown Planthopper (Nilaparvatalugens Stal) Resistance Gene bph 2 of Indica Rice Introgressed into a Japonica Breeding Line 'Norin-PL4',” Genes &Genetics Systems, Vol. 73, No. 6, 1998, pp. 359-364. doi:10.1266/ggs.73.359

[14]   P. N. Sharma, A. Torii, S. Takumi, N. Mori andC. Nakamura, “Marker-Assisted Pyramiding of Brown Planthopper (Nilaparvatalugens Stal) Resistance Genes bph 1 and bph 2 on Rice Chromosome 12,” Hereditas, Vol. 140, No. 1, 2004, pp. 61-69. doi:10.1111/j.1601-5223.2004.01726.x

[15]   Microsatellite Analysis Program.

[16]   S. N. Qureshi, S. Saha, R. V. Kantety and J. N. Jenkins, “Molecular Biology and Physiology. EST-SSR: A New Class of Genetic Markers in Cotton,” The Journal of Cotton Science, Vol. 8, No. 2, 2004, pp. 112-123.

[17]   I. Eujayl, M. E. Sorrells, M. Baum, P. Wolters and W. Powell, “Isolation of EST-Derived Microsatellite Markers for Genotyping the A and B Genomes of Wheat,” Tag Theoretical and Applied Genetics, Vol. 104, No. 2-3, 2002, pp. 399-407. doi:10.1007/s001220100738

[18]   R. K. Varshney, R. Sigmund, A. B?rner, V. Korzun, N. Stein, M. E. Sorrells, P. Langridge and A. Graner, “Interspecific Transferability and Comparative Mapping of Barley EST-SSR Markers in Wheat, Rye and Rice,” Plant Science, Vol. 168, No. 1, 2005, pp. 195-202. doi:10.1016/j.plantsci.2004.08.001

[19]   I. Eujayl, M. Sorrells, M. Baum, P. Wolters and W. Powell, “Assessment of Genotypic Variation among Cultivated Durum Wheat Based on EST-SSRS and Genomic SSRS,” Euphytica, Vol. 119, No. 1-2, 2001, pp. 39-43. doi:10.1023/A:1017537720475

[20]   M. A. R. Mian, M. C. Saha, A. A. Hopkins and Z. Y. Wang, “Use of Tall Fescue EST-SSR Markers in Phylogenetic Analysis of Cool-Season Forage Grasses,” Genome, Vol. 48, No. 4, 2005, pp. 637-647. doi:10.1139/g05-029

[21]   M. C. Saha, M. A. R. Mian, I. Eujayl, J. C. Zwonitzer, L. Wang and G. D. May, “Tall Fescue EST-SSR Markers with Transferability across Several Grass Species,” TAG Theoretical and Applied Genetics, Vo. 109, No. 4, 2004, pp. 783-791. doi:10.1007/s00122-004-1681-1