OJSS  Vol.2 No.3 , September 2012
Test of the Rosetta Pedotransfer Function for Saturated Hydraulic Conductivity
ABSTRACT
Simulation models are tools that can be used to explore, for example, effects of cultural practices on soil erosion and irrigation on crop yield. However, often these models require many soil related input data of which the saturated hydraulic conductivity (Ks) is one of the most important ones. These data are usually not available and experimental determination is both expensive and time consuming. Therefore, pedotransfer functions are often used, which make use of simple and often readily available soil information to calculate required input values for models, such as soil hydraulic values. Our objective was to test the Rosetta pedotransfer function to calculate Ks. Research was conducted in a 64-ha field near Lamesa, Texas, USA. Field measurements of soil texture and bulk density, and laboratory measurements of soil water retention at field capacity (–33 kPa) and permanent wilting point (–1500 kPa), were taken to implement Rosetta. Calculated values of Ks were then compared to measured Ks on undisturbed soil samples. Results showed that Rosetta could be used to obtain values of Ks for a field with different textures. The Root Mean Square Difference (RMSD) of Ks at 0.15 m soil depth was 7.81 × 10–7 m·s–1. Further, for a given soil texture the variability, from 2.30 × 10–7 to 2.66 × 10–6 m·s-1, of measured Ks was larger than the corresponding RMSD. We conclude that Rosetta is a tool that can be used to calculate Ks in the absence of measured values, for this particular soil. Level H5 of Rosetta yielded the best results when using the measured input data and thus calculated values of Ks can be used as input in simulation models.

Cite this paper
C. Alvarez-Acosta, R. Lascano and L. Stroosnijder, "Test of the Rosetta Pedotransfer Function for Saturated Hydraulic Conductivity," Open Journal of Soil Science, Vol. 2 No. 3, 2012, pp. 203-212. doi: 10.4236/ojss.2012.23025.
References
[1]   C. M. Rubio, P. Llorens and F. Gallart, “Uncertainty and Efficiency of Pedotransfer Functions for Estimating Water Retention Characteristics of Soils,” European Journal of Soil Science, Vol. 59, No. 2, 2008, pp. 339-347. doi:10.1111/j.1365-2389.2007.01002.x

[2]   O. Vigiak, S. J. E. van Dijck, E. E. van Loon and L. Stroosnijder, “Matching Hydrologic Response to Measured Effective Hydraulic Conductivity,” Hydrological Processes, Vol. 20, No. 3, 2006, pp. 487-504. doi:10.1002/hyp.5916

[3]   J. H. M. W?sten, Y. A. Pachepsky and W. J. Rawles, “Pedotransfer Functions: Bridging the Gap between Available Basic Soil Data and Missing Soil Hydraulic Characteristics,” Journal of Hydrology, Vol. 251, No. 3-4, 2001, pp. 123-150. doi:10.1016/S0022-1694(01)00464-4

[4]   S. R. Evett and R. J. Lascano, “ENWATBAL.BAS: A Mechanistic Evapotranspiration Model Written in Compiled Basic,” Agronomy Journal, Vol. 85, No. 3, 1993, pp. 763-772. doi:10.2134/agronj1993.00021962008500030044x

[5]   R. J. Lascano, “A General System to Measure and Calculate Daily Crop Water Use,” Agronomy Journal, Vol. 92, No. 5, 2000, pp. 821-832. doi:10.2134/agronj2000.925821x

[6]   J. ?imünek, M. ?ejna and M. T. van Genuchten, “The Hydrus-2D Software Package for Simulating the Two-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media. IGWMC-TPS 53-251 v. 2.0,” Colorado School of Mines International, Ground Water Modeling Center Golden, Colorado, 1999.

[7]   D. E. Radcliffe and J. ?imünek, “Soil Physics with HY-DRUS Modeling and Applications,” CRC Press, Boca Raton, 2010.

[8]   C. C. Molling, “Precision Agricultural-Landscape Modeling System. Version 5. Combined User’s and Developer’s Manual,” University of Wisconsin Board of Regents, Wisconsin, 2008.

[9]   C. C. Molling, J. C. Strikwerda, J. N. Norman, C. A. Rodgers, R. Wayne, C. L. S. Morgan, G. R. Diak and J. R. Mecikalski, “Distributed Runoff Formulation Designed for a Precision Agricultural Landscape Modeling System,” Journal of the American Water Resources Association, Vol. 41, No. 6, 2005, pp. 1289-1313. doi:10.1111/j.1752-1688.2005.tb03801.x

[10]   C. L. S. Morgan, “Quantifying Soil Morphological Properties for Landscape Management Applications,” Ph.D. Dissertation, University of Wisconsin-Madison, Wisconsin, 2003.

[11]   H. Aksoy and M. L. Kavvas, “A Review of Hillslope and Watershed Scale Erosion and Sediment Transport Models,” Catena, Vol. 64, No. 2-3, 2005, pp. 247-271. doi:10.1016/j.catena.2005.08.008

[12]   M. G. Schaap and F. J. Leij, “Using Neural Networks to Predict Soil Water Retention and Soil Hydraulic Conductivity,” Soil and Tillage Research, Vol. 47, No. 1-2, 1998, pp. 37-42. doi:10.1016/S0167-1987(98)00070-1

[13]   W. Aimrun and M. S. M. Amin, “Pedo-Transfer Function for Saturated Hydraulic Conductivity of Lowland Paddy Soils,” Paddy Water Environment, Vol. 7, No. 3, 2009, pp. 217-225. doi:10.1007/s10333-009-0165-y

[14]   M. G. Schaap, F. J. Leij and M. T. van Genuchten, “Rosetta: A Computer Program for Estimating Soil Hydraulic Parameters with Hierarchical Pedotransfer Functions,” Journal of Hydrology, Vol. 251, No. 3-4, 2001, pp. 163-176. doi:10.1016/S0022-1694(01)00466-8

[15]   L. Stroosnijder, “Measurement of Erosion: Is It Possible?” Catena, Vol. 64, No. 2-3, 2005, pp. 162-173. doi:10.1016/j.catena.2005.08.004

[16]   W. J. Rawles and D. L. Brakensiek, “Estimating Soil-Water Retention from Soil Properties,” Journal of the Irrigation and Drainage Division, Vol. 108, No. 2, 1982, pp. 166-171.

[17]   A. B. McBratney, B. Minasny, S. R. Cattle and R. W. Vervoort, “From Pedotransfer Functions to Soil Inference Systems,” Geoderma, Vol. 109, No. 1-2, 2002, pp. 41-73. doi:10.1016/S0016-7061(02)00139-8

[18]   Y. Pachepsky, D. E. Radcliffe and H. M. Selim, “Scaling Methods in Soil Physics,” CRC Press, New York, 2003.

[19]   K. Parasuraman, A. Elshorbagy and B. C. Si, “Estimating Saturated Hydraulic Conductivity in Spatially Variable Fields Using Neural Network Ensembles,” Soil Science Society of America Journal, Vol. 70, No. 6, 2006, pp. 1851-1859. doi:10.2136/sssaj2006.0045

[20]   C. Gülser and F. Candemir, “Prediction of Saturated Hydraulic Conductivity Using Some Moisture Constants and Soil Physical Properties,” Proceeding Balwois, Ohrid, 31 May 2008.

[21]   R. Mu?oz-Carpena, C. M. Regalado, J. Alvarez-Benedi and F. Bartoli, “Field Evaluation of the New Philip-Dunne Permeameter for Measuring Saturated Hydraulic Conductivity,” Soil Science, Vol. 167, No. 1, 2002, pp. 9-24. doi:10.1097/00010694-200201000-00002

[22]   M. Mbonimpa, M. Aubertin, R. P. Chapuis and B. Bussière, “Practical Pedotransfer Functions for Estimating the Saturated Hydraulic Conductivity,” Geotechnical and Geological Engineering, Vol. 20, 2002, pp. 235-259. doi:10.1023/A:1016046214724

[23]   K. Kobayashi and M. U. Salam, “Comparing Simulated and Measured Values Using Mean Squared Deviation and Its Components,” Agronomy Journal, Vol. 92, No. 2, 2000, pp. 345-352. doi:10.2134/agronj2000.922345x

[24]   D. N. Moriasi, J. G. Arnold, M. W. Van Liew, R. L. Bingner, R. D. Harmel and T. L. Veith, “Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations,” Transactions of the ASABE, Vol. 50, No. 3, 2007, pp. 885-900.

[25]   P. D. Colaizzi, P. H. Gowda, T. H. Marek and D. O. Porter, “Irrigation in the Texas High Plains: A Brief History and Potential Reductions in Demand,” Irrigation and Drainage, Vol. 58, No. 3, 2009, pp. 257-274. doi:10.1002/ird.418

[26]   NRCS, “Official Series Description,” 2008. http://www2.ftw.nrcs.usda.gov/osd/dat/A/ACUFF.html.

[27]   C. Stumpp, S. Engelhardt, M. Hofmann and B. Huwe, “Evaluation of Pedotransfer Functions for Estimating Soil Hydraulic Properties of Prevalent Soils in a Catchment of the Bavarian Alps,” European Journal of Forest Research, Vol. 128, No. 6, 2009, pp. 609-620. doi:10.1007/s10342-008-0241-7

[28]   Y. Mualem, “New Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations,” Water Resources Research, Vol. 12, No. 3, 1976, pp. 513-522. doi:10.1029/WR012i003p00513

[29]   M. T. van Genuchten, “A Closed-Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils,” Soil Science Society American Journal, Vol. 44, No. 5, 1980, pp. 892-898. doi:10.2136/sssaj1980.03615995004400050002x

[30]   G. J. Bouyoucos, “Hydrometer Method Improved for Making Particle Size Analyses of Soils,” Agronomy Journal, Vol. 54, No. 5, 1962, pp. 464-465. doi:10.2134/agronj1962.00021962005400050028x

[31]   A. Klute, R. C. Dinauer, A. L. Page, R. H. Miller and D. R. Keeney, “Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods,” Soil Science Society of America, Madison, 1986.

[32]   Eijkelkamp, “Laboratory Permeameter. Operating Instructions,” 2008. http://www.eijkelkamp.com/Portals/2/Eijkelkamp/Files/Manals/M10902e%20Laboratory%20permeameters.pdf).

[33]   Eijkelkamp, “Sand/Kaolin Box,” 2005. http://www.eijkelkamp.com/Portals/2/Eijkelkamp/Files/Manuals/M10802e%20Sand%20kaolin%20box.pdf.

[34]   Eijkelkamp, “Pressure Membrane Apparatus,” 2005. http://www.eijkelkamp.com/Portals/2/Eijkelkamp/Files/Manuals/M10803e%20Pressure%20membrane.pdf

 
 
Top