Second Order Periodic Boundary Value Problems Involving the Distributional Henstock-Kurzweil Integral

Show more

References

[1] S. Leela, “Monotone Method for Second Order Periodic Boundry Value Problems,” Nonlinear Analysis, Vol. 7, No. 4, 1983, pp. 349-355. doi:10.1016/0362-546X(83)90088-3

[2] V. Lakshmikantham, V. Sree Hari Rao and A. S. Vatsala, “Monotone Method for a System of Second Order Periodic Boundary Value Problems,” Applied Mathematics Computation, Vol. 15, 1984, pp. 71-83.
doi:10.1016/0096-3003(84)90054-7

[3] E. Talvila, “The Distributional Denjoy Integral,” Real Analysis, Exchang, Vol. 33, No. 1, 2008, pp. 51-82.

[4] P. Y. Lee, “Lanzhou Lecture on Henstock Integration,” World Scientific, Singapore City, 1989.

[5] S. Schwabik and G. J. Ye, “Topics in Banach Space Integration,” World Scientific, Singapore City, 2005.

[6] Y. P. Lu, G. J. Ye and Y. Wang, “The Darboux Problem Involving the Distributional Henstock-Kurzweil Integral,” Proceedings of the Edinburgh Mathematical Society, Vol. 55, No. 1, 2012, pp. 197-205.

[7] Y. P. Lu, G. J. Ye and W. Liu, “Existence of Solutions of the Wave Equation Involving the Distributional Henstock-Kurzweil Integral,” Differential Integral Equation, Vol. 24, No. 11-12, 2011, pp. 1063-1071.

[8] Q. L. Liu and G. J. Ye, “Some Problems on the Convergence of the Distributional Denjoy Integral,” Acta Mathematics Sinica, Vol. 54, No. 4, 2011, pp. 659-664.

[9] D. D. Ang, K. Schmitt and L. K. Vy, “A Multidimensional Analogue of the Denjoy-Perron-Henstock-Kurz- weil Integral,” Bulletin of the Belgian Mathematical Society, Vol. 4, No. 3, 1997, pp. 355-371.

[10] D. J. Guo, Y. J. Cho and J. Zhu, “Partial Ordering Methods in Nonlinear Problems,” Hauppauge, Nova Science Publishers, New York, 2004.