APM  Vol.2 No.5 , September 2012
Existence of a Nontrivial Solution for a Class of Superquadratic Elliptic Problems
ABSTRACT
We consider the existence of a nontrivial solution for the Dirichlet boundary value problem -△u+a(x)u=g(x,u),in Ω u=0, on Ω We prove an abstract result on the existence of a critical point for the functional f on a Hilbert space via the local linking theorem. Different from the works in the literature, the new theorem is constructed under the(C)* condition instead of (PS)* condition.

Cite this paper
X. Mo, P. Jing, Y. Zhao and A. Mao, "Existence of a Nontrivial Solution for a Class of Superquadratic Elliptic Problems," Advances in Pure Mathematics, Vol. 2 No. 5, 2012, pp. 314-317. doi: 10.4236/apm.2012.25043.
References
[1]   S. J. Li and M. Willem, “Applications of Local Linking to Critical Point Theory,” Journal of Mathematical Analysis and Applications, Vol. 189, No. 1, 1995, pp. 6-32. doi:10.1006/jmaa.1995.1002

[2]   X.-L. Fan and Y.-Z. Zhao, “Linking and Multiplicity Results for the p-Laplacian on Unbounded Cylinders,” Journal of Mathematical Analysis and Applications, Vol. 260, No. 2, 2001, pp. 479-489. doi:10.1006/jmaa.2000.7468

[3]   Q. S. Jiu, J. B. Su, “Existence and Multiplicity Results for Dirichlet Problems with p-Laplacian,” Journal of Mathematical Analysis and Applications, Vol. 281, No. 2, 2003, pp. 587-601. doi:10.1016/S0022-247X(03)00165-3

[4]   P. H. Rabinowitz, “Periodic Solutions of Hamiltonian Systems,” Communications on Pure and Applied Mathematics, Vol. 31, No. 2, 1978, pp. 157-184. doi:10.1002/cpa.3160310203

[5]   Q. Jiang and C. L. Tang, “Existence of a Nontrivial Solution for a Class of Superquadratic Elliptic Problems,” Nonlinear Analysis, Vol. 69, No. 2, 2008, pp. 523-529. doi:10.1016/j.na.2007.05.038

[6]   S. X. Luan and A. M. Mao, “Periodic Solutions for a Class of Non-Autonomous Hamiltonian Systems,” Nonlinear Analysis, Vol. 61, No. 8, 2005, pp. 1413-1426. doi:10.1016/j.na.2005.01.108

 
 
Top