IJOC  Vol.2 No.3 , September 2012
Mortar-Pestle and Microwave Assisted Regioselective Nitration of Aromatic Compounds in Presence of Certain Group V and VI Metal Salts under Solvent Free Conditions
ABSTRACT
Solvent – free Mortar-pestle (grinding) and microwave-assisted nitration reactions (MWANR’s) underwent smoothly in the presence of group V and VI metal salts with high regio-selectivity for anilides, moderately- and non-activated aro-matic compounds. The reactions were conducted under solvent-free conditions, which afforded good to excellent yields. The observed reaction times in MW assisted conditions are in the range of only few minutes.

Cite this paper
S. Sana, K. Reddy, K. Rajanna, M. Venkateswarlu and M. Ali, "Mortar-Pestle and Microwave Assisted Regioselective Nitration of Aromatic Compounds in Presence of Certain Group V and VI Metal Salts under Solvent Free Conditions," International Journal of Organic Chemistry, Vol. 2 No. 3, 2012, pp. 233-247. doi: 10.4236/ijoc.2012.23032.
References
[1]   G. Booth, “Nitro Compounds, Aromatic,” Ullmann’s Ency-clopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2005.

[2]   G. A. Olah, R. Malhorta and S. C. Narang, “Nitration: Methods and Mechanisms,” VCH Publishers, New York, 1989.

[3]   H. Zollinger, “Color Chemistry: Properties and Applications of Organic Dyes,” 2nd Edition, John Wiley, New York, 1991.

[4]   R. Meyer, J. Kholar and A. Homburg, “Explosives,” 5th Edition, John Wiley, New York, 2002.

[5]   M. B. Smith and J. March, “March’s Advanced Organic Chemistry,” 5th Edition, John Wiley, New York, 2001.

[6]   S. P. Dagade, S. B. Waghmode, V. S. Kadam and M. K. Dongare, “Vapor Phase Nitration of Toluene Using Dilute Nitric Acid and Molecular Modeling Studies over Beta Zeolite,” Applied Catalysis A: General, Vol. 226, No. 13, 2002, pp. 49-61. doi:10.1016/S0926-860X(01)00882-1

[7]   T. Esakkidurai and K. Pitchumani, “Zeolite-Mediated Regioselective Nitration of Phenol in Solid State,” Journal of Molecular Catalysis A: Chemical, Vol. 185, No. 1-2, 2002, pp.305-309. doi:10.1016/S1381-1169(02)00135-8

[8]   M. A. Zolfigol, E. Ghaemi and E. Madrakian, “Trichloroisocyanuric Acid/NaNO2 as a Novel Heterogeneous System for the Selective Mononitration of Phenols under Mild Conditions,” Synlett, No. 2, 2003, pp.191-194. doi:10.1002/chin.200319081

[9]   H. A. Muathen, “Selective Nitration of Aromatic Compounds with Bismuth Subnitrate and Thionyl Chloride,” Molecules, Vol. 8, No. 7, 2003, pp. 593-598. doi:10.3390/80700593

[10]   N. M. Leonard, L. C. Wieland and R. S. Mohan, “Applications of Bismuth(III) Compounds in Organic Synthsis,” Tetrahedron, Vol. 58, No. 42, 2002, pp. 8373-8397. doi:10.1016/S0040-4020(02)01000-1

[11]   H. Suzuki, T. Ikegami and Y. Matano, “Bismuth in Organic Transformations,” Synthesis, No. 3, 1997, pp. 249- 267. doi: 0.1055/s-1997-1194

[12]   J. H. Ridd, “Some Unconventional Pathways in Aromatic Nitration,” Acta Chemica Scandinavica, Vol. 52, No. 1, 1998, pp. 11-22. doi:10.3891/acta.chem.scand.52-0011

[13]   P. T. Anastas and J. C. Warner, “Green Chemistry: The- ory and Practice,” Oxford University Press, New York, 1998.

[14]   P. T. Anastas and T. C. Williamson, “Green Chemistry: Designing Chemistry for the Environment,” American Chemical Society, Washington, DC, 1996.

[15]   P. T. Anastas and L. G. Heine, “Green Chemical Synthesis and Processes,” American Chemical Society, Washington, DC, 2000.

[16]   S. K. Ritter, Chem. Eng. News 2001, pp 27-34.

[17]   P.T. Anastas, M. M. Kirchhoff, “Origin, Current Status, and Future Challenges of Green Chemistry,” Accounts of Chemical Research, Vol. 35, No. 9, 2002, pp. 686- 694. doi:10.1021/ar010065m

[18]   M. Lancaster, “Green Chemistry: An Introductory Text,” RSC, Cambridge, 2002.

[19]   A. Yamamoto, “Toward Development of Environmentally Benign Processes Catalyzed by Transition-Metal Complexes,” Pure and Applied Chemistry, Vol. 74, No. 1, 2002, pp. 1-6. doi:10.1351/pac200274010001

[20]   M. Eissen and J. O. Metzger, “Environmental Performance Metrics for Daily Use in Synthetic Chemistry,” Chemistry—A European Journal, Vol. 8, No. 16, 2002, pp. 3580-3585. doi:10.1002/1521-3765(20020816

[21]   B. M Trost, “The Atom Economy: A Search for Synthetic Efficiency,” Science, Vol. 254, No. 5037, 1991, pp. 1471- 1477. doi:10.1126/science.1962206

[22]   B. M. Trost, “Atom Economy—A Challenge for Organic Synthesis: Homogeneous Catalysis Leads the Way,” Ange-wandte Chemie International Edition in English, Vol. 34, No. 3, 1995, pp. 259-281. doi:10.1002/anie.199502591

[23]   B. M. Trost, “On Inventing Reactions for Atom Econ- omy,” Accounts of Chemical Re-search, Vol. 35, No. 9, 2002, pp. 695-705. doi:10.1021/ar010068z

[24]   D. M. P. Mingos and I. P. Beletskaya, Eds. “Atom Efficient Organic Synthesis,” Journal of Organometallic Chemistry, Vol. 23, 2004, pp. 689-697.

[25]   F. Alonso, I. P. Beletskaya and Miguel Yusa, “Non-Conventional Methodologies for Transition-Metal Catalysed Carbon–Carbon Coupling: A Critical Overview. Part 1: The Heck Reaction,” Tetrahedron, Vol. 61, No. 50, 2005, pp. 11771-11835. doi:10.1016/j.tet.2005.08.054

[26]   D. C. Dittmer, “‘No-Solvent’ Organic Synthesis,” Chemistry & Industry, No. 19, 1997, pp. 779-784.

[27]   A. Kumar and S. Sharma, “A Grinding-Induced Catalyst- and Solvent-Free Synthesis of Highly Functionalized 1,4- Dihydropyridines via a Domino Multicomponent Reaction,” Green Chemistry, Vol. 13, No. 8, 2011, pp. 2017- 2020. doi:10.1039/C1GC15223H

[28]   K. Tanaka and F. Toda, “Solvent-Free Organic Synthesis,” Chemical Reviews, Vol. 100, No. 3, 2000, pp. 1025- 1074.

[29]   A. Loupy, “Solvent-Free Reactions,” Modern Solvents in Organic Synthesis, Vol. 206, 1999, pp. 153-207. doi:10.1007/3-540-48664-X_7

[30]   R. A. Sheldon, “Green Solvents for Sustainable Organic Synthesis: State of the Art,” Green Chemistry, Vol. 7, No. 5, 2005, pp. 267-278. doi:10.1039/B418069K

[31]   C. Suryanarayana, “Mechanical Alloying and Milling” Progress in Materials Science, Vol. 46, No. 1-2, 2001, pp. 1-184.

[32]   R. Janot and D. Guérard, “Ball-Milling in Liquid Media: Applications to the Preparation of Anodic Materials for Lithium-Ion Batteries,” Progress in Materials Science, Vol. 50, No. 1, 2005, pp. 1-92. doi:10.1016/S0079-6425(03)00050-1

[33]   A. L. Garay, A. Pichon and S. L. James., “Solvent-Free Synthesis of Metal Complex,” Chemical Society Reviews, Vol. 36, No. 6, 2007, pp. 846-855. doi:10.1039/b600363j

[34]   A. Orita, L. S. Jiang, T. Nakano, N. Ma and J. Otera, “Solventless Reaction Dramatically Accelerates Supra- molecular Self-Assembly,” Chemical Communications, No. 13, 2002, pp.1362. doi:10.1039/b203651g

[35]   P. Lidstrom, J. Tierney, B. Wathey and J. Westman, “Mi- crowave Assisted Organic Synthesis—A Review,” Tet- rahedron, Vol. 57, No. 45, 2001, pp. 9225-9283. doi.10.1016/S0040-4020(01)00906-1

[36]   C. O. Kappe and D. Dallinger, “The Impact of Micro- wave Synthesis on Drug Discovery,” Nature Reviews Drug Discovery, Vol. 5, No. 1, 2006, pp. 51-63. doi:10.1038/nrd1926

[37]   A. K. Nagariya, A. K. Meena, K. Kiran, A. K. Yadav, U. S. Niranjan, A. K. Pathak, B. Singh and M. M. Rao, “Microwave Assisted Organic Reaction as New Tool in Organic Synthesis,” Journal of pharmacy Research, Vol. 3, 2010, pp.575-580.

[38]   F. Toda, “Solid State Organic Chemistry: Efficient Reactions, Remarkable Yields, and Stereoselectivity,” Accounts of Chemical Research, Vol. 28, No. 12, 1995, pp. 480-486. doi:10.1021/ar00060a003

[39]   R. S. Varma, “Clay and Clay-Supported Reagents in Organic Synthesis,” Tetrahedron, Vol. 58, No. 7, 2002, pp 1235-1255. doi:10.1016/S0040-4020(01)01216-9,

[40]   M. Kidwai, R. Venkataraman and B. Dave. “Solventless Synthesis of Thiohydantoins over K2CO3,” Green Chemistry, Vol. 3, No. 6, 2001, pp. 278-279. doi:10.1039/B106034C

[41]   C. O. Kappe., “Controlled Microwave Heating in Modern Organic Synthesis,” Angewandte Chemie International Edition, Vol. 43, No. 46, 2004, pp. 6250-6284. doi:10.1002/anie.200400655

[42]   C. O. Kappe and A. Stadler, “Microwaves in Organic and Medicinal Chemistry,” Wiley-VCH, Weinheim, 2005.

[43]   A. Loupy, “Microwaves in Organic Synthesis,” Wiley- VCH, Weinheim, 2005.

[44]   B. Botta, G. Delle Monache, G. Zappia, et al., “Synthesis and Interaction with Copper(II) Cations of Cyano- and Aminoresorcin[4]arenas,” The Journal of Organic Chemistry, Vol. 67, No. 4, 2002, pp. 1178-1183. doi:10.1021/jo010844g

[45]   R. N. Gedye, F. E. Smith and K. C. Westaway, “The Rapid Synthesis of Organic Compounds in Microwave Ovens,” Canadian Journal of Chemistry, Vol. 66, No. 1, 1988, pp. 17-26. doi:10.1139/v88-003

[46]   A. Loupy, L. Perreux, M. Liagre, K. Burle and M. Moneuse, “Reactivity and Selectivity under Microwaves in Organic Chemistry. Relation with Medium Effects and Reaction Mechanisms,” Pure and Applied Chemistry, Vol. 73, No. 1, 2001, pp. 161-166. doi:10.1351/pac200173010161

[47]   L. Perreux and A. Loupy, “A Tentative Rationalization of Microwave Effects in Organic Synthesis According to the Reaction Medium, and Mechanistic Considerations,” Tet- rahedron, Vol. 57, No. 45, 2001, pp. 9199-9223. doi:10.1016/S0040-4020(01)00905-X.

 
 
Top