IJOC  Vol.2 No.3 , September 2012
Suggested New Terms for Describing Chiral States and the State-Dependent Behavior of Chiral Systems
Author(s) Karel D. Klika*
ABSTRACT
Deficiencies in the terminology used to describe chiral systems exist for behaviors under various processes and thus a more general, robust terminology is considered. For example, the descriptions for characterizing melting point, solubility, and recrystallization behaviors were adopted well before it was realized that perturbation of the enantiomeric com-position (ec) due to self-disproportionation could be effected by processes other than recrystallization such as sublimation, chromatography over achiral substrates, and even distillation. Thus, an endeavor has been made to address the question of universally describing behaviors under processes that effect, or are dependent on, the ec. The main terms that have been defined with respect to behavior are homomate (analogous to a conglomerate), heteromate, bimate (analogous to a racemic compound), and unimate (analogous to a solid solution) and they apply to melting point, solubility, recrystallization, sublimation, distillation, and chromatographic processes. Additionally, suggestions for improving the terminology for describing the states of chiral systems are also considered and the defined terms are: holemate (hol, ec = 100%), scalemate (scl, 50% < ec < 100%), and equimate (eqm, ec = 50%).

Cite this paper
K. Klika, "Suggested New Terms for Describing Chiral States and the State-Dependent Behavior of Chiral Systems," International Journal of Organic Chemistry, Vol. 2 No. 3, 2012, pp. 224-232. doi: 10.4236/ijoc.2012.23031.
References
[1]   L. Pasteur, “Essay on the Relationship between the Crystalline State and Chemical Composition and Their Effect on Optical Rotation,” Comptes Rendus Hebdomadaires des Seances de l’Academie des Sciences, Vol. 26, No. 21, 1848, pp. 535-538.

[2]   L. Pasteur, “On the Relationships between the Crystalline Form, Chemical Composition and the Direction of Optical Rotation,” Annales de Chimie et de Physique, Vol. 24, No. 6, 1848, pp. 442-459.

[3]   L. Pasteur, “Transformation of Tartaric Acid into Racemic Acid. The Discovery of Inactive Tartaric Acid. A New Method for the Separation of Racemic Acid into Right and Left Tartaric Acids,” Comptes Rendus Hebdomadaires des Seances de l’Academie des Sciences, Vol. 37, 1853, pp. 162-166.

[4]   J. Gal, “On the Meaning and Use of Homochiral,” Journal of Chromatography A, Vol. 829, No. 1-2, 1998, pp. 417-418.

[5]   J. Gal, “Problems of Stereochemical Nomenclature and Terminology. 1. The Homochiral Controversy. Its Nature and Origins, and a Proposed Solution,” Enantiomer, Vol. 3, No. 3, 1998, pp. 263-273.

[6]   E. L. Eliel, “Infelicitous Stereochemical Nomenclatures,” Chirality, Vol. 9. No. 5-6, 1997, pp. 428-430.

[7]   P. T?htinen, T. Oja, N. Dreiack, P. M?nts?l?, J. Niemi, M. Mets?-Ketel? and K. D. Klika, “Epimers vs. Inverse Epimers: The C-1 configuration in alnumycin Al,” RSC Advances, Vol. 2, 2012, pp. 5098-5100.

[8]   K. D. Klika, “Proposed Extension to the Natta Projection Notation System for Enabling an Indication of Relative Stereochemistry and the Stereochemical State,” Interna- tional Journal of Organic Chemistry, Vol. 1, No. 4, 2011, pp. 215-217. doi:10.4236/ijoc.2011.14031

[9]   T. Oja, P. T?htinen, N. Dreiack, P. M?nts?l?, J. Niemi, M. Mets?-Ketel? and K. D. Klika, “Alnumycins A2 and A3, New Inverse-Epimeric Pairs Stereoisomeric to Alnumycin A1,” Tetrahedron: Asymmetry, Vol. 23, No. 9, 2012, pp. 670-682. doi:10.1016/j.tetasy.2012.05.001

[10]   K. D. Klika, P. T?htinen, P. M?nts?l?, J. Niemi and M. Mets?-Ketel?, “The Potential of VCD to Resolve the Epimer vs. Inverse Epimer Quandary,” Computational and Theoretical Chemistry, Vol. 992, 2012, pp. 156-163.

[11]   T. Oja, K. D. Klika, L. Appassamy, J. Sinkkonen, P. M?nts?l?, J. Niemi and M. Mets?-Ketel?, “Biosynthetic Pathway toward Carbohydrate-Like Moieties of Alnumy- cins Contains Unusual Steps for C-C Bond Formation and Cleavage,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 109, No. 16, 2012, pp. 6024-6029. doi:10.1073/pnas.1201530109

[12]   R. M. Carman and K. D. Klika, “The Four Diepoxides of (R)-(+)-Limonene,” Australian Journal of Chemistry, Vol. 44, No. 12, 1991, pp. 1803-1808. doi:10.1071/CH9911803

[13]   R. M. Carman and K. D. Klika, “2,9-Dihydroxy- and 2,10-Dihydroxy-1,8-Cineole. Two New Possum Urinary Metabolites,” Australian Journal of Chemistry, Vol. 47, No. 8, 1994, pp. 1509-1521. doi:10.1071/CH9941509

[14]   R. E. Gawley, “Do the Terms ‘% ee’ and ‘% de’ Make Sense as Expressions of Stereoisomer Composition or Stereoselectivity?” The Journal of Organic Chemistry, Vol. 71, No. 6, 2006, pp. 2411-2416. doi:10.1021/jo052554w

[15]   H. B. Kagan, “Is There a Preferred Expression for the Composition of a Mixture of Enantiomers?” Recueil des Travaux Chimiques des Pays-Bas, Vol. 114, No. 4-5, 1995, pp. 203-205.

[16]   J. H. Brewster, “Racemic, Scalemic, Holemic,” Chemical & Engineering News, Vol. 70, No. 20, 1992, pp. 2-3. doi:10.1021/cen-v070n020.p002

[17]   C. H. Heathcock, “Alternative to Homochiral,” Chemical & Engineering News, Vol. 69, No. 5, 1991, pp. 2-3. doi:10.1021/cen-v069n005.p002

[18]   R. H. Cornforth and J. W. Cornforth, “How to be Right and Wrong,” Croatica Chemica Acta, Vol. 69, No. 2, 1996, pp. 427-433.

[19]   F. Faigl, E. Fogassy, M. Nógrádi, E. Pálovics and J Schindler, “Separation of Non-Racemic Mixtures of Enantiomers: An Essential Part of Optical Resolution,” Or- ganic & Biomolecular Chemistry, Vol. 8, No. 5, 2010, pp. 947-959.

[20]   V. A. Soloshonok and D. O. Berbasov, “Self-Disproportionation of Enantiomers on Achiral Phase Chromatography. One More Example of Fluorine’s Magic Powers,” Chimica Oggi/Chemistry Today, Vol. 24, No. 3, 2006, pp. 44-47.

[21]   G. Pracejus, “Optical Activation of N-Phthalyl-?-amino Acid Derivatives by Tert.-Base-Catalysis,” Justus Liebigs Annalen der Chemie, Vol. 622, No. 1, 1959, pp. 10-22. doi:10.1002/jlac.19596220104

[22]   H. Kwart and D. P. Hoster, “Separation of an Enantio- morph and Its Racemate by Sublimation,” The Journal of Organic Chemistry, Vol. 32, No. 6, 1967, pp. 1867-1870. doi:10.1021/jo01281a037

[23]   D. L. Garin, D. J. C. Greco and L. Kelley, “Enhancement of Optical Activity by Fractional Sublimation. An Alter- native to Fractional Crystallization and a Warning,” The Journal of Organic Chemistry, Vol. 42, No. 7, 1977, pp. 1249-1251. doi:10.1021/jo00427a033

[24]   V. A. Soloshonok, H. Ueki, M. Yasumoto, S. Mekala, J. S. Hirschi and D. A. Singleton, “Phenomenon of Optical Self-Purification of Chiral Non-Racemic Compounds,” Journal of the American Chemical Society, Vol. 129, No. 40, 2007, pp. 12112-12113. doi:10.1021/ja065603a

[25]   M. Yasumoto, H. Ueki and V. A. Soloshonok, “Self- Disproportionation of Enantiomers of ?-Trifluoro-methyl Lactic Acid Amides via Sublimation,” Journal of Fluo- rine Chemistry, Vol. 131, No. 4, 2010, pp. 540-544. doi:10.1016/j.jfluchem.2009.11.010

[26]   M. Yasumoto, H. Ueki and V. A. Soloshonok, “Self- Disproportionation of Enantiomers of 3,3,3-Tri-fluorolac- tic Acid Amides via Sublimation,” Journal of Fluorine Chemistry, Vol. 131, No. 2, 2010, pp. 266-269. doi:10.1016/j.jfluchem.2009.10.002

[27]   M. Yasumoto, H. Ueki, T. Ono, T. Katagiri and V. A. Soloshonok, “Self-Disproportionation of Enantiomers of Isopropyl 3,3,3-(Trifluoro)Lactate via Sublimation: Sublimation Rates vs. Enantiomeric Composition,” Journal of Fluorine Chemistry, Vol. 131, No. 4, 2010, pp. 535- 539. doi:10.1016/j.jfluchem.2009.11.026

[28]   M. Albrecht, V. A. Soloshonok, L. Schrader, M. Yasumoto and M. A. Suhm, “Chirality-Dependent Sublimation of ?-(Trifluoromethyl)-Lactic Acid: Relative Vapor Pressures of Racemic, Eutectic, and Enantiomerically Pure Forms, and Vibrational Spectroscopy of Isolated (S,S) and (S,R) Dimers,” Journal of Fluorine Chemistry, Vol. 131, No. 4, 2010, pp. 495-504 doi:10.1016/j.jfluchem.2009.11.015

[29]   R. H. Perry, C. Wu, M. Nefliu and R. G. Cooks, “Serine Sublimes with Spontaneous Chiral Amplification,” Chemical Communications, No. 10, 2007, pp. 1071-1073. doi:10.1039/b616196k

[30]   R. M. Carman and K. D. Klika, “Partially Racemic Compounds as Brushtail Possum Urinary Metabolites,” Australian Journal of Chemistry, Vol. 45, No. 4, 1992, pp. 651-657. doi:10.1071/CH9920651

[31]   B. Koppenhoefer and U. Trettin, “Is It Possible to Affect the Enantiomeric Composition by a Simple Distillation Process?” Fresenius’ Zeitschrift für Analytische Chemie, Vol. 333, No. 7, 1989, p. 750. doi:10.1007/BF00476607

[32]   T. Katagiri, C. Yoda, K. Furuhashi, K. Ueki and T. Ku- bota, “Separation of an Enantiomorph and Its Racemate by Distillation: Strong Chiral Recognizing Ability of Tri- fluorolactates,” Chemistry Letters, Vol. 25, No. 2, 1996, pp. 115-116. doi:10.1246/cl.1996.115

[33]   V. Nieminen, D. Yu. Murzin and K. D. Klika, “NMR and Molecular Modeling of the Dimeric Self-Association of the Enantiomers of 1,1’-Bi-2-Napthol and 1-Phenyl-2,2, 2-Trifluoroethanol in the Solution State and Their Relevance to Enantiomer Self-Disproportionation on Achiral Phase Chromatography (ESDAC),” Organic & Biomolecular Chemistry, Vol. 7, No. 3, 2009, pp. 537-542.

[34]   V. A. Soloshonok, “Remarkable Amplification of the Self-Disproportionation of Enantiomers on Achiral-Phase Chromatography Columns,” Angewandte Chemie, International Edition, Vol. 45, No. 5, 2006, pp. 766-769.

[35]   R. Stephani and V. J. Cesare, “Enantiomeric Enrichment of Non-Racemic Antihistamines by Achiral High-Performance Liquid Chromatography,” Journal of Chromatography A, Vol. 813, No. 1, 1998, pp. 79-84. doi:10.1016/S0021-9673(98)00339-2

[36]   R. M. Carman and K. D. Klika, “The Optical Fractionation of a Partially Racemic Natural Product by Chromatography over an Achiral Substrate,” Australian Journal of Chemistry, Vol. 44, No. 6, 1991, pp. 895-896. doi:10.1071/CH9910895

[37]   V. A. Soloshonok and D. O. Berbasov, “Self-Dispro- portionation of Enantiomers of (R)-Ethyl 3-(3,5-Dinitro- benzamido)-4,4,4-Trifluorobutanoate on Achiral Silica Gel Stationary Phase,” Journal of Fluorine Chemistry, Vol. 127, No. 4-5, 2006, pp. 597-603.

[38]   M. Suchy, P. Kutschy, K. Monde, H. Goto, N. Harada, M. Takasugi, M. Dzurilla and E. Balentová, “Synthesis, Absolute Configuration, and Enantiomeric Enrichment of a Cruciferous Oxindole Phytoalexin, (S)-(?)-Spirobrassinin, and Its Oxazoline Analog,” The Journal of Organic Chemistry, Vol. 66, No. 11, 2001, pp. 3940-3947. doi:10.1021/jo0155052

[39]   K. D. Klika, M. Budovská and P. Kutschy, “NMR Spectral Enantioresolution of Spirobrassinin and 1-Methoxy- spirobrassinin Enantiomers using (S)-(?)-Ethyl Lactate and Modeling of Spirobrassinin Self-Association for Rationalization of Its Self-Induced Diastereomeric Anisochronism (SIDA) and Enantiomer Self-Disproportionation on Achiral-Phase Chromatography (ESDAC) Phenomena,” Journal of Fluorine Chemistry, Vol. 131, No. 4, 2010, pp. 467-476. doi:10.1016/j.jfluchem.2009.10.018

[40]   K. D. Klika, M. Budovská and P. Kutschy, “Enantiodifferentiation of Phytoalexin Spirobrassinin Derivatives Using the Chiral Solvating Agent (R)-(+)-1,1’-Bi-2- Naphthol in Conjunction with Molecular Modeling,” Tetrahedron: Asymmetry, Vol. 21, No. 6, 2010, pp. 647-658.

[41]   A. B. Ouryupin, M. I. Kadyko, P. V. Petrovskii, E. I. Fedin, A. Okruszek, R. Kinas and W. J. Stec, “Enantiomeric 2-Anilino-2-oxo-1,3,2-oxazapho-sphorinanes: Synthesis and NMR-Investigation of Their Non-Racemic Mixtures,” Tetrahedron: Asymmetry, Vol. 6, No. 7, 1995, pp. 1813-1824.

[42]   C. Luchinat and S. Roelens, “Enantiomeric Purity Determination of 1,2-Diols through NMR Spectroscopy without Chiral Auxiliaries,” Journal of the American Chemical Society, Vol. 108, No. 16, 1986, pp. 4873-4878. doi:10.1021/ja00276a027

[43]   P. L. Polavarapu, A. G. Petrovic, S. E. Vick, W. D. Wulff, H. Ren, Z. Ding and R. J. Staples, “Absolute Configuration of 3,3’-Diphenyl-[2,2’-Binaphthalene]-1,1’-Diol Revisited,” The Journal of Organic Chemistry, Vol. 74, No. 15, 2009, pp. 5451-5457. doi:10.1021/jo901013z

 
 
Top