[1] R. Thauer, K. Jungermann and K. Decker, “Energy Conservation in Chemotrophic Anaerobic Bacteria,” Bacteriological Review, Vol. 41, No. 1, 1977, pp. 100-180.
[2] A. M. Blackmer, J. M. Bremner and E. L. Schmidt, “Production of Nitrous Oxide by Ammonia-Oxidizing Chemoautotrophic Microorganisms in Soil,” Applied and Environmental Microbiology, Vol. 40, No. 6, 1980, pp. 1060-1066.
[3] E. Siefert and N. Pfennig, “Chemoautotrophic Growth of Rhodopesudomonas Species with Hydrogen and Chemotrophic Utilization of Methanol and Formate,” Archives of Microbiology, Vol. 122, No. 2, 1979, pp. 177-182. doi:10.1007/BF00411357
[4] C. Castelle, M. Guiral, G. Malarte, F. Ledgham, G. Leroy, M. Brugna and M.-T. Giudici-Orticon, “A New Iron-Oxidizing/O2-Reducing Supercomplex Spanning Both Inner and Outer Membranes, Isolated from the Extreme Acidophile Acidithiobacillus ferrooxidans,” Journal of Biological Chemistry, Vol. 283, No. 38, 2008, pp. 25803-25811. doi:10.1074/jbc.M802496200
[5] A. Elbehti, G. Brasseur and D. Lemesle-Meunier, “First Evidence for Existence of an Uphill Electron Transfer through the bc1 and NADH-Q Oxidoreductase Complexes of the Acidophilic Obligate Chemoautotrophic Ferrous Ion-Oxidizing Bacterium Thibacillus ferroxidans,” Journal of Bacteriology, Vol. 182, No. 12, 2000, pp. 3602-3606. doi:10.1128/JB.182.12.3602-3606.2000
[6] D. H. Park and J. G. Zeikus, “Utilization of Electrically Reduced Neutral Red by Actinobacillus succinogenes: Physiological Function of Neutral Red in Membrane-Driven Fumarate Reduction and Energy Conservation,” Journal of Bacteriology, Vol. 181, No. 8, pp. 2403-2410.
[7] A. A. Karyakin, O. A. Bobrova and E. E. Karyakina, “Electroreduction of NAD+ to Enzymatically Active NADH at Poly(Neutral Red) Modified Electrodes,” Journal of Electroanalytical Chemistry, Vol. 399, No. 1-2, 1995, pp. 179-184. doi:10.1016/0022-0728(95)04300-4
[8] M. Hügler, C. Menendez, H. Sch?gger and G. Fuchs, “Malonyl-Coenzyme A Reductase from Chloroflexus aurantiacus, a Key Enzyme of the 3-Hydroxypropionate Cycle for Autotrophic CO2 Fixation,” Journal of Bacteriology, Vol. 184, No. 9, 2002, pp. 2404-2410. doi:10.1128/JB.184.9.2404-2410.2002
[9] H. Buschhhorn, P. Dürre and G. Gottschalk, “Production and Utilization of Ethanol by the HomoacetogenAcetobacterium woodii,” Applied and Environmental Microbiology, Vol. 55, No. 7, 1989, pp. 1835-1840.
[10] H. Zhang, M. A. Bruns and B. E. Logan, “Biological Hydrogen Production by Clostridium acetobutylicum in an Unsaturated Flow Reactor,” Water Research, Vol. 40, No. 4, 2006, pp. 728-734. doi:10.1016/j.watres.2005.11.041
[11] J. Zhang, J. Sun, X. Zhang, Y. Zhao and S. Zhang, “The Recent Development of CO2 Fixation and Conversion by Ionic Liquid,” Greenhouse Gases: Science and Technology, Vol. 1, No. 2, 2011, pp. 142-159.
[12] B. Wang, Y. Li, N. Wu and C. Q. Lan, “CO2 Bio-Mitigation Using Microalgae,” Applied Microbiology and Biotechnology, Vol. 79, No. 5, 2008, pp. 707-718. doi:10.1007/s00253-008-1518-y
[13] J. E. Funk, “Thermochemical Hydrogen Production: Past and Present,” International Journal of Hydrogen Energy, Vol. 26, No. 3, 2001, pp. 185-190. doi:10.1016/S0360-3199(00)00062-8
[14] A. Steinfeld, “Solar Hydrogen Production via a Two-Step Water-Splitting Thermochemical Cycle Based on Zn/ZnO Redox Reactions,” International Journal of Hydrogen Energy, Vol. 27, 2002, pp. 611-619. doi:10.1016/S0360-3199(01)00177-X
[15] B. Y. Jeon, I. L. Jung and D. H. Park, “Enrichment and Isolation of CO2-Fixing Bacteria with Electrochemical Reducing Power as a Sole Energy Source,” Journal of Environmental Protection, Vol. 3, 2012, pp. 55-60. doi:10.4236/jep.2012.31007
[16] B. Y. Jeon, I. L. Jung and D. H. Park, “Enrichment of CO2-Fixing Bacteria in Cylinder-Type Electrochemical Bioreactor with Built-In Anode Compartment,” Journal of Microbiology and Biotechnology, Vol. 21, No. 6, 2011, pp. 590-598.
[17] C. J. Kay, L. P. Solomonson and M. J. Barber, “Electrochemical and Kinetic Analysis of Electron-Transfer Reactions of Chlorella Nitrate Reductase,” Biochemistry, Vol. 30, No. 48, 1991, pp. 11445-11450. doi:10.1021/bi00112a011
[18] X. Zhong, J. Chen, B. Liu, Y. Xu and Y. Kuang, “Neutral Red as Electron Transfer Mediator Enhanced Electrocatalytic Activity of Platinum Catalyst for Methanol Electro-Oxidation,” Journal of Solid State Electrochemistry, Vol. 11, No. 4, 2007, pp. 463-468. doi:10.1007/s10008-006-0174-3
[19] L. Huang, J. M. Regan and X. Quan, “Electron Transfer Mechanisms, New Applications, and performance of Biocathode Microbial Fuel Cells,” Bioresource Technology, Vol. 102, 2011, pp. 316-323. doi:10.1016/j.biortech.2010.06.096
[20] G. Reguera, K. D. McCarthy, T. Mehta, J. S. Nicoll, M. T. Tuominen and D. R. Lovley, “Extracellular Electron Transfer via Microbial Nanowires,” Nature, Vol. 435, 2005, pp. 1098-1101. doi:10.1038/nature03661
[21] J. Song, Y. Kim, M. Lim, H, Lee, J. I. Lee and W. Shin, “Microbes as Electrochemical CO2 Conversion Catalysts,” ChemSusChem, Vol. 4, No. 5, 2011, pp. 587-590. doi:10.1002/cssc.201100107