[1] L. H. Ford, “Inflation Driven by a Vector Field,” Physical Review D, Vol. 40, No. 4, 1989, pp. 967-972.
[2] A. B. Burd and J. E. Lidsey, “An Analysis of Inflationary Models Driven by Vector Fields,” Nuclear Physics B, Vol. 351, No. 3, 1991, pp. 679-694. doi:10.1016/S0550-3213(05)80039-2
[3] A. Golovnev, V. Mukhanov and V. Vanchurin, “Vector Inflation,” Journal of Cosmology and Astroparticle Physics, No. 6, 2008.
[4] A. Golovnev and V. Vanchurin, “Cosmological Perturbations from Vector Inflation,” Physical Review D, Vol. 79, No. 10, 2009, Article ID: 103524. doi:10.1103/PhysRevD.79.103524
[5] T. Maki, Y. Naramoto and K. Shiraishi, “On the Cosmology of Weyl’s Gauge Invariant Gravity,” Acta Physica Polonica B, Vol. 41, No. 6, 2010, pp. 1195-1201.
[6] H. Weyl, “Electron and Gravitation,” Zeitschrift für Physik, Vol. 56, 1929, pp. 330-352. doi:10.1007/BF01339504
[7] S. Deser, “Scale Invariance and Gravitational Coupling,” Annals of Physics, Vol. 59, No. 1, 1970, pp. 248-253. doi:10.1016/0003-4916(70)90402-1
[8] D. K. Sen and K. A. Dunn, “A Scalar-Tensor Theory of Gravitation in a Modified Riemannian Manifold,” Journal of Mathematical Physics, Vol. 12, No. 4, 1971, pp. 578-586. doi:10.1063/1.1665623
[9] P. A. M. Dirac, “Long Range Forces and Broken Symmetries,” Proceedings of the Royal Society A, Vol. 333, No. 4, 1973, pp. 403-418.
[10] P. G. O. Freund, “Local Scale Invariance and Gravitation,” Annals of Physics, Vol. 84, No. 1-2, 1974, pp. 440-454. doi:10.1016/0003-4916(74)90310-8
[11] R. Utiyama, “On Weyl’s Gauge Field,” Progress of Theoretical Physics, Vol. 50, No. 6, 1973, pp. 2080-2090. doi:10.1143/PTP.50.2080
[12] R. Utiyama, “On Weyl’s Gauge Field 2,” Progress of Theoretical Physics, Vol. 53, No. 2, 1975, pp. 565-574. doi:10.1143/PTP.53.565
[13] K. Hayashi, M. Kasuya and T. Shirafuji, “Elementary Particles and Weyl’s Gauge Field,” Progress of Theoretical Physics, Vol. 57, No. 2, 1977, pp. 431-440. doi:10.1143/PTP.57.431
[14] K. Hayashi and T. Kugo, “Everything about Weyl’s Gauge Field,” Progress of Theoretical Physics, Vol. 61, No. 1, 1979, pp. 334-346. doi:10.1143/PTP.61.334
[15] D. Ranganathan, “A Geometric Interpretation for the Dirac Field in Curved Space,” Journal of Mathematical Physics, Vol. 28, No. 10, 1987, pp. 2437-2439. doi:10.1063/1.527732
[16] H. Cheng, “The Possible Existence of Weyl’s Vector Meson,” Physical Review Letters, Vol. 61, No. 19, 1988, pp. 2182-2184. doi:10.1103/PhysRevLett.61.2182
[17] H. Cheng, “Dark Matter and Scale Invariance,” 2004.
[18] W. F. Kao, “Inflationary Solution in Weyl Invariant Theory,” Physics Letters A, Vol. 149, No. 2-3, 1990, pp. 76-78. doi:10.1016/0375-9601(90)90528-V
[19] W. F. Kao, “Scale Invariance and Inflation,” Physics Letters A, Vol. 154, No. 1-2, 1991, pp. 1-4.
[20] W. F. Kao, “Higher Derivative Weyl Gravity,” Physical Review D, Vol. 61, No. 4, 2000, Article ID: 047501. doi:10.1103/PhysRevD.61.047501
[21] W. F. Kao, S.-Y. Lin and T.-K. Chyi, “Weyl Invariant Black Hole,” Physical Review D, Vol. 53, No. 4, 1996, pp. 1955-1962. doi:10.1103/PhysRevD.53.1955
[22] D. Hochberg and G. Plunien, “Theory of Matter in Weyl Space-Time,” Physical Review D, Vol. 43, No. 10, 1991, pp. 3358-3367. doi:10.1103/PhysRevD.43.3358
[23] W. R. Wood and G. Papini, “Breaking Weyl Invariance in the Interior of a Bubble,” Physical Review D, Vol. 45, No. 10, 1992, pp. 3617-3627. doi:10.1103/PhysRevD.45.3617
[24] M. Pawlowski, “Gauge Theory of Phase and Scale,” Turkish Journal of Physics, Vol. 23, No. 5, 1999, pp. 895-902.
[25] H. Nishino and S. Rajpoot, “Broken Scale Invariance in the Standard Model,” hep-th/0403039.
[26] H. Nishino and S. Rajpoot, “Standard Model and SU(5) GUT with Local Scale Invariance and the Weylon,” arXiv: 0805.0613 [hep-th].
[27] H. Nishino and S. Rajpoot, “Implication of Compensator Field and Local Scale Invariance in the Standard Model,” Physical Review D, Vol. 79, No. 12, 2009, Article ID: 125025. doi:10.1103/PhysRevD.79.125025
[28] H. Nishino and S. Rajpoot, “Weyl’s Scale Invariance for the Standard Model, Renormalizability and the Zero Cos- mological Constant,” Classical and Quantum Gravity, Vol. 28, No. 14, 2011, Article ID: 145014. doi:10.1088/0264-9381/28/14/145014
[29] H. Wei and R.-G. Cai, “Cheng-Weyl Vector Field and Its Cosmological Application,” Journal of Cosmology and Astroparticle Physics, No. 9, 2007.
[30] P. Jain and S. Mitra, “Cosmological Symmetry Breaking, Pseudo-Scale Invariance, Dark Energy and the Standard Model,” Modern Physics Letters A, Vol. 22, No. 22, 2007, pp. 1651-1661. doi:10.1142/S0217732307023754
[31] P. Jain and S. Mitra, “One Loop Calculation of Cosmological Constant in a Scale Invariant Theory,” Modern Physics Letters A, Vol. 24, No. 26, 2009, pp. 2069-2079. doi:10.1142/S0217732309031351
[32] P. Jain and S. Mitra, “Standard Model with Cosmologically Broken Quantum Scale Invariance,” Modern Physics Letters A, Vol. 25, No. 3, 2010, pp. 167-177. doi:10.1142/S0217732310032317
[33] P. Jain, S. Mitra and N. K. Singh, “Cosmological Implications of a Scale Invariant Standard Model,” Journal of Cosmology and Astroparticle Physics, No. 3, 2008.
[34] P. K. Aluri, P. Jain and N. K. Singh, “Dark Energy and Dark Matter in General Relativity with Local Scale In- variance,” Modern Physics Letters A, Vol. 24, No. 20, 2009, pp. 1583-1595. doi:10.1142/S0217732309030060
[35] P. K. Aluri, P. Jain, S. Mitra, S. Panda and N. K. Singh, “Constraints on the Cosmological Constant due to Scale Invariance,” Modern Physics Letters A, Vol. 25, No. 16, 2010, pp. 1349-1364. doi:10.1142/S0217732310032561
[36] P. Jain, S. Mitra, S. Panda and N. K. Singh, “Scale Invariance as a Solution to the Cosmological Constant Problem,” arXiv:1010.3483 [hep-ph].
[37] P. Jain, P. Karmakar, S. Mitra, S. Panda and N. K. Singh, “Cosmological Perturbation Analysis in a Scale Invariant Model of Gravity,” Classical and Quantum Gravity, Vol. 28, No. 21, 2011, Article ID: 215010. doi:10.1088/0264-9381/28/21/215010
[38] E. Scholz, “Cosmological Spacetimes Balanced by a Scale Covariant Scalar Field,” Foundations of Physics, Vol. 39, No. 1, 2009, pp. 45-72. doi:10.1007/s10701-008-9261-x
[39] E. Scholz, “Weyl Geometric Gravity and ‘Breaking’ of Electroweak Symmetry,” Annalen der Physik, Vol. 523, No. 7, 2011, pp. 507-530. doi:10.1002/andp.201100032
[40] S. Deser and G. W. Gibbons, “Born-Infeld-Einstein Actions?” Classical and Quantum Gravity, Vol. 15, No. 5, 1998, pp. L35-L39. doi:10.1088/0264-9381/15/5/001
[41] M. N. R. Wohlfarth, “Gravity a la Born-Infeld,” Classical and Quantum Gravity, Vol. 21, No. 8, 2004, pp. 1927-1940. doi:10.1088/0264-9381/21/8/001
[42] D. N. Vollick, “Palatini Approach to Born-Infeld-Einstein Theory and a Geometric Description of Electrodynamics,” Physical Review D, Vol. 69, No. 6, 2004, Article ID: 064030. doi:10.1103/PhysRevD.69.064030
[43] D. N. Vollick, “Born-Infeld-Einstein Theory with Matter,” Physical Review D, Vol. 72, No. 8, 2005, Article ID: 084026. doi:10.1103/PhysRevD.72.084026
[44] D. N. Vollick, “Black Hole and Cosmological Space-Times in Born-Infeld-Einstein Theory,” gr-qc/0601136.
[45] J. A. Nieto, “Born-Infeld Gravity in Any Dimension,” Physical Review D, Vol. 70, No. 4, 2004, Article ID: 044042. doi:10.1103/PhysRevD.70.044042
[46] D. Comelli and A. Dolgov, “Determinant-Gravity: Cosmological Implications,” Journal of High Energy Physics, No. 11, 2004.
[47] D. Comelli, “Born-Infeld Gravity,” International Journal of Modern Physics A, Vol. 20, No. 11, 2005, pp. 2331-2335. doi:10.1142/S0217751X05024584
[48] D. Comelli, “Born-Infeld Type Gravity,” Physical Review D, Vol. 72, No. 6, 2005, Article ID: 064018. doi:10.1103/PhysRevD.72.064018
[49] E. Rojas, “Higher Order Curvature Terms in Born-Infeld Type Brane Theories,” International Journal of Modern Physics D, Vol. 20, No. 1, 2011, pp. 59-75. doi:10.1142/S0218271811018615
[50] I. Gullu, T. C. Sisman and B. Tekin, “Unitarity Analysis of General Born-Infeld Gravity Theories,” Physical Review D, Vol. 82, No. 12, 2010, Article ID: 124023. doi:10.1103/PhysRevD.82.124023
[51] A. D. Linde, “Chaotic Inflation,” Physics Letters B, Vol. 129, No. 3-4, 1983, pp. 177-181. doi:10.1016/0370-2693(83)90837-7
[52] E. Silverstein and D. Tong, “Scalar Speed Limits and Cosmology: Acceleration from D-cceleration,” Physical Review D, Vol. 70, No. 10, 2004, Article ID: 103505. doi:10.1103/PhysRevD.70.103505
[53] M. Alishahiha, E. Silverstein and D. Tong, “DBI in the Sky,” Physical Review D, Vol. 70, No. 12, 2004, Article ID: 123505.
[54] I. Gullu, T. C. Sisman and B. Tekin, “Born-Infeld Extension of New Massive Gravity,” Classical and Quantum Gravity, Vol. 27, No. 16, 2010, Article ID: 162001. doi:10.1088/0264-9381/27/16/162001
[55] I. Gullu, T. C. Sisman and B. Tekin, “c-Functions in the Born-Infeld Extended New Massive Gravity,” Physical Review D, Vol. 82, No. 2, 2010, Article ID: 024032. doi:10.1103/PhysRevD.82.024032
[56] A. Ghodsi and D. M. Yekta, “Black Holes in Born-Infeld Extended New Massive Gravity,” Physical Review D, Vol. 83, No. 10, 2011, Article ID: 104004. doi:10.1103/PhysRevD.83.104004
[57] D. P. Jatkar and A. Sinha, “New Massive Gravity and AdS4 Counterterms,” Physical Review Letters, Vol. 106, No. 17, 2011, Article ID: 171601. doi:10.1103/PhysRevLett.106.171601
[58] E. A. Bergshoeff, O. Hohm and P. K. Townsend, “Massive Gravity in Three Dimensions,” Physical Review Letters, Vol. 102, No. 20, 2009, Article ID: 201301. doi:10.1103/PhysRevLett.102.201301
[59] E. A. Bergshoeff, O. Hohm and P. K. Townsend, “More on Massive 3D Gravity,” Physical Review D, Vol. 79, No. 12, 2009, Article ID: 124042. doi:10.1103/PhysRevD.79.124042
[60] S. Dengiz and B. Tekin, “Higgs Mechanism for New Massive Gravity and Weyl Invariant Extensions of Higher Derivative Theories,” Physical Review D, Vol. 84, No. 2, 2011, Article ID: 024033. doi:10.1103/PhysRevD.84.024033
[61] T. Moon, J. Lee and P. Oh, “Conformal Invariance in Einstein-Cartan-Weyl Space,” Modern Physics Letters A, Vol. 25, No. 37, 2010, pp. 3129-3143. doi:10.1142/S0217732310034201
[62] T. Moon, P. Oh and J. Sohn, “Anisotropic Weyl Symmetry and Cosmology,” Journal of Cosmology and Astroparticle Physics, 2010, arXiv: 1002.2549v3.