Back
 JMP  Vol.3 No.9 , September 2012
Dirac Hamiltonian with Imaginary Mass and Induced Helicity—Dependence by Indefinite Metric
Abstract: It is of general theoretical interest to investigate the properties of superluminal matter wave equations for spin one-half particles. One can either enforce superluminal propagation by an explicit substitution of the real mass term for an imaginary mass, or one can use a matrix representation of the imaginary unit that multiplies the mass term. The latter leads to the tachyonic Dirac equation, while the equation obtained by the substitution m im in the Dirac equation is naturally referred to as the imaginary-mass Dirac equation. Both the tachyonic as well as the imaginary-mass Dirac Hamiltonians commute with the helicity operator. Both Hamiltonians are pseudo-Hermitian and also possess additional modified pseudo-Hermitian properties, leading to constraints on the resonance eigenvalues. Here, by an explicit calculation, we show that specific sum rules over the The spectrum is found to consist of well-defined real energy eigenvalues and complex resonance and anti-resonance energies. In the quantized imaginary-mass Dirac field, one-particle states of right-handed helicity acquire a negative norm (“indefinite metric”) and can be excluded from the physical spectrum by a Gupta-Bleuler type condition.
Cite this paper: U. Jentschura, "Dirac Hamiltonian with Imaginary Mass and Induced Helicity—Dependence by Indefinite Metric," Journal of Modern Physics, Vol. 3 No. 9, 2012, pp. 887-894. doi: 10.4236/jmp.2012.39116.
References

[1]   U. D. Jentschura and B. J. Wundt, “Pseudo-Hermitian Quan- tum Dynamics of Tachyonic Spin-1/2 Particles,” Journal of Physics A: Mathematical and Theoretical, e-print arXiv: 1110.4171, in Press.

[2]   U. D. Jentschura and B. J. Wundt, “Localizability of Tachyonic Particles and Neutrinoless Double Beta Decay,” The European Physical Journal C—Particles and Fields, Vol. 72, No. 2, 2012, p. 1894. doi:10.1140/epjc/s10052-012-1894-4

[3]   O. M. P. Bilaniuk, V. K. Deshpande and E. C. G. Sudarshan, “‘Meta’ Relativity,” American Journal of Physics, Vol. 30, No. 10, 1962, p. 718. doi:10.1119/1.1941773

[4]   G. Feinberg, “Possibility of Faster-than-Light Particles,” Physical Review, Vol. 159, No. 5, 1967, p. 1089. doi:10.1103/PhysRev.159.1089

[5]   M. E. Arons and E. C. G. Sudarshan, “Lorentz Invariance, Local Field Theory, and Faster-than-Light Particles,” Physical Review, Vol. 173, No. 5, 1968, p. 1622. doi:10.1103/PhysRev.173.1622

[6]   J. Dhar and E. C. G. Sudarshan, “Quantum Field Theory of Interacting Tachyons,” Physical Review, Vol. 174, No. 5, 1968, p. 1808. doi:10.1103/PhysRev.174.1808

[7]   O.-M. Bilaniuk and E. C. G. Sudarshan, “Causality and Space-Like Signals,” Nature, Vol. 223, 1969, pp. 386-387. doi:10.1038/223386b0

[8]   G. Feinberg, “Lorentz Invariance of Tachyon Theories,” Physical Review D, Vol. 17, No. 6, 1978, p. 1651. doi:10.1103/PhysRevD.17.1651

[9]   http://cupp.oulu.fi/neutrino/nd-mass.html

[10]   R. G. H. Robertson, T. J. Bowles, G. J. Stephenson, D. L. Wark, J. F. Wilkerson and D. A. Knapp, “Limit on Mass from Observation of the β Decay of Molecular Tritium,” Physical Review Letters, Vol. 67, No. 8, 1991, p. 957. doi:10.1103/PhysRevLett.67.957

[11]   K. Assamagan, et al., “Measurement of the Muon Momentum in Pion Decay at Rest Using a Surface Muon Beam,” Physical Letters B, Vol. 335, No. 2, 1994, pp. 231- 236. doi:10.1016/0370-2693(94)91419-2

[12]   W. Stoeffl and D. J. Decman, “Anomalous Structure in the Beta Decay of Gaseous Molecular Tritium,” Physical Review Letters, Vol. 75, No. 18, 1995, p. 3237. doi:10.1103/PhysRevLett.75.3237

[13]   K. Assamagan, et al., “Upper Limit of the Muon-Neutrino Mass and Charged-Pion Mass from Momentum Analysis of a Surface Muon Beam,” Physical Review D, Vol. 53, No. 11, 1996, p. 6065. doi:10.1103/PhysRevD.53.6065

[14]   C. Weinheimer, B. Degen, A. Bleile, J. Bonn, L. Bornschein, O. Kazachenko, A. Kovalik and E. Otten, “High Precision Measurement of the Tritium Β Spectrum near Its Endpoint and upper Limit on the Neutrino Mass,” Physics Letters B, Vol. 460, No. 1-2, 1999, pp. 219-226. doi:10.1016/S0370-2693(99)00780-7

[15]   V. M. Lobashev, et al., “Direct Search for Mass of Neutrino and Anomaly in the Tritium Beta-Spectrum,” Physics Letters B, Vol. 460, No. 1-2, 1999, pp. 227-235. doi:10.1016/S0370-2693(99)00781-9

[16]   A. I. Belesev, et al., “Investigation of Space-Charge Effects in Gaseous Tritium as a Source of Distortions of the Beta Spectrum Observed in the Troitsk Neutrino-Mass Experiment,” Physics of Atomic Nuclei, Vol. 71, No. 3, 2008, pp. 427-436. doi:10.1134/S1063778808030046

[17]   G. R. Kalbfleisch, N. Baggett, E. C. Fowler and J. Alspector, “Experimental Comparison of Neutrino, Antineutrino, and Muon Velocities,” Physical Review Letters, Vol. 43, No. 19, 1979, p. 1361. doi:10.1103/PhysRevLett.43.1361

[18]   P. Adamson, et al., “Measurement of Neutrino Velocity with the MINOS Detectors and NuMI Neutrino Beam,” Physical Review D, Vol. 76, No. 7, 2007, p. 072005. doi:10.1103/PhysRevD.76.072005

[19]   M. Antonello, et al., “ICARUS Collaboration, Measurement of the Neutrino Velocity with the ICARUS Detector at the CNGS Beam,” e-print arXiv: 1203.3433v3.

[20]   J. Ciborowski, “Hypothesis of Tachyonic Neutrinos,” Acta Physica Polonica B, Vol. 29, No. 1-2, 1998, pp. 113-121.

[21]   M. Dracos, “On Behalf of the OPERA Collaboration, the Neutrino Velocity Measurement by OPERA Experiment,” the XXV International Conference on Neutrino Physics and Astrophysics, Kyoto, 3-9 June 2012, 15 p. http://regmedia.co.uk/2012/06/11/neutrinos_not_ftl_slides.pdf

[22]   A. Chodos, A. I. Hauser and V. A. Kostelecky, “The Neutrino as a Tachyon,” Physics Letters B, Vol. 150, No. 6, 1985, pp. 431-435. doi:10.1016/0370-2693(85)90460-5

[23]   A. Chodos, V. A. Kostelecky, R. Potting and E. Gates, “Null Experiments for Neutrino Masses,” Modern Physics Letters A, Vol. 7, No. 6, 1992, p. 467. doi:10.1142/S0217732392000422

[24]   A. Chodos and V. A. Kostelecky, “Nuclear Null Tests for Spacelike Neutrinos,” Physics Letters B, Vol. 336, No. 3-4, 1994, pp. 295-302. doi:10.1016/0370-2693(94)90535-5

[25]   J. Rembielinski, “Tachyons and Preferred Frames,” International Journal of Modern Physics A, Vol. 12, No. 9, 1997, p. 1677.

[26]   T. Chang, “A New Dirac-Type Equation for Tachyonic Neutrinos,” e-print arXiv: hep-th/0011087.

[27]   T. Chang, “Parity Violation and a Preferred Frame,” e-print arXiv: quant-ph/0204002.

[28]   J. Bandukwala and D. Shay, “Theory of Free, Spin-$1/2$ Tachyons,” Physical Review D, Vol. 9, No. 4, 1974, p. 889. doi:10.1103/PhysRevD.9.889

[29]   W. Pauli, “On Dirac’s New Method of Field Quantization,” Reviews of Modern Physics, Vol. 15, No. 3, 1943, p. 175. doi:10.1103/RevModPhys.15.175

[30]   C. M. Bender and S. Boettcher, “Real Spectra in Non-Hermitian Hamiltonians Having PT Symmetry,” Physical Review Letters, Vol. 80, No. 24, 1998, p. 5243. doi:10.1103/PhysRevLett.80.5243

[31]   C. M. Bender and G. V. Dunne, “Large-Order Perturbation Theory for a Non-Hermitian PT-Symmetric Hamiltonian,” Journal of Mathematical Physics, Vol. 40, No. 10, 1999, pp. 4616-4621. doi:10.1063/1.532991

[32]   C. M. Bender, S. Boettcher and P. N. Meisinger, “PT-Symmetric Quantum Mechanics,” Journal of Mathematical Physics, Vol. 40, No. 5, 1999, pp. 2201-2229. doi:10.1063/1.532860

[33]   C. M. Bender and E. J. Weniger, “Numerical Evidence That the Perturbation Expansion for a Non-Hermitian PT-Symmetric Hamiltonian Is Stieltjes,” Journal of Mathematical Physics, Vol. 42, No. 5, 2001, pp. 2167-2183. doi:10.1063/1.1362287

[34]   C. M. Bender, D. C. Brody and H. F. Jones, “Complex Extension of Quantum Mechanics,” Physical Review Letters, Vol. 89, No. 27, 2002, p. 270401. doi:10.1103/PhysRevLett.89.270401

[35]   A. Mostafazadeh, “Pseudo-Hermiticity versus PT-Symmetry III: Equivalence of Pseudo-Hermiticity and the Presence of Antilinear Symmetries,” Journal of Mathematical Physics, Vol. 43, No. 8, 2002, pp. 3944-3951. doi:10.1063/1.1489072

[36]   A. Mostafazadeh, “Pseudo-Hermiticity and Generalized PT- and CPT-Symmetries,” Journal of Mathematical Physics, Vol. 44, No. 3, 2003, pp. 974-989. doi:10.1063/1.1539304

[37]   U. D. Jentschura, A. Surzhykov and J. Zinn-Justin, “Unified Treatment of Even and Odd Anharmonic Oscillators of Arbitrary Degree,” Physical Review Letters, Vol. 102, No. 1, 2009, p. 011601. doi:10.1103/PhysRevLett.102.011601

[38]   U. D. Jentschura, A. Surzhykov and J. Zinn-Justin, “Multi-Instantons and Exact Results III: Unification of Even and Odd Anharmonic Oscillators,” Annals of Physics, Vol. 325, No. 5, 2010, pp. 1135-1172. doi:10.1016/j.aop.2010.01.002

[39]   C. Itzykson and J. B. Zuber, “Quantum Field Theory,” McGraw-Hill, New York, 1980.

[40]   C. M. Bender, J. Brod, A. Refig and M. E. Reuter, “The C Operator in PT-Symmetric Quantum Theories,” Journal of Physics A: Mathematical and General, Vol. 37, No. 43, 2004, p. 10139. doi:10.1088/0305-4470/37/43/009

[41]   R. M. Bionta, “Detection of a Rare Event on 23 February 1987 by the Neutrino Radiation Detector under Mont Blanc,” JETP Letters, Vol. 45, No. 10, 1987, pp. 593-595.

[42]   T. Adam, et al., “OPERA Collaboration, Measurement of the Neutrino Velocity with the OPERA Detector in the CNGS Beam,” e-print arXiv: 1109.4897v4.

 
 
Top