NM  Vol.3 No.3 , September 2012
Otoacoustic Emissions and Evoked Potentials in Infants after Breast-Feeding Jaundice——Hearing Dysfunction in Breast-Feeding Jaundice
ABSTRACT
We study hearing in a group of infants with Breast-feeding jaundice (BFJ) by means of Transient-evoked otoacoustic emissions (T-EOE) and Brainstem auditory evoked potentials (BAEP) searching for relationship between bilirubin serum levels and auditory dysfunction. Eleven infants born at-term with BFJ were selected for the study. We studied also 11 control age- and gender matched healthy at-term infants without signs of jaundice. T-EOAE studies were performed between 5-7 days after birth, and 3 months later. BAEP studies were performed once. BFJ group infants exhibited lower amplitudes in T-EOE than infants in the control group. These differences disappear at the 3-month evaluation. In BAEP, we observed a significant latency delay of waves I and V in Breast-feeding jaundice group infants. All infants in both groups demonstrated reproducible wave V response at 30 decibels. No significant correlation values were observed between bilirubin serum levels and T-EOE and BAEP variables. Our data suggest that BFJ can result in transient peripheral and central auditory dysfunction. Dysfunction is reversible after treatment of infants with BFJ.

Cite this paper
A. Poblano, N. Ballesteros, C. Arteaga, B. Flores and T. Flores, "Otoacoustic Emissions and Evoked Potentials in Infants after Breast-Feeding Jaundice——Hearing Dysfunction in Breast-Feeding Jaundice," Neuroscience and Medicine, Vol. 3 No. 3, 2012, pp. 270-274. doi: 10.4236/nm.2012.33030.
References
[1]   A. Gkoltsiouk, M. Tzoufi, S. Counsell, M. Rutherford and F. Cowan, “Serial Brain MRI and Ultrasound Findings: Relation to gestational Age, Bilirubin Level, Neonatal Neurologic Status, and Neurodevelopmental Outcome in Infants at Risk of Kernicterus,” Early Human Development, Vol. 84, No. 12, 2008, pp. 829-838. doi:10.1016/j.earlhumdev.2008.09.008

[2]   N. Y. Boo, A. S. Rohani and A. Asma, “Detection of Sensorineural Hearing Loss Using Automated Auditory Brainstem-Evoked Response and Transient-Evoked Otoacoustic Emissions in at Term Neonates with Severe Hyperbilirubinemia,” Singapore Medical Journal, Vol. 49, No. 3, 2008, pp. 209-214.

[3]   S. Garza-Morales, A. Poblano, A. Robledo-Galván and L. A. Fernández-Carrocera, “Auditory Evoked Potentials in Children at Neonatal Risk for Hypoacusis,” Panamerican Journal of Public Health, Vol. 2, No. 4, 1997, pp. 232- 237. doi:10.1590/S1020-49891997001000002

[4]   S. B. Amin, C. Ahlfors, M. S. Orlando, L. E. Dalzell, K. S. Merle and R. Guillet, “Bilirubin and Serial Auditory Brainstem Responses in Premature Infants,” Pediatrics, Vol. 107, No. 4, 2001, pp. 664-670. doi:10.1542/peds.107.4.664

[5]   Y. Yilmaz, S. Degirmenci, F. Akdas, S. Kulekci, A. Ciprut, S. Yuksel, F. Yildiz, L. Karadeniz and A. Say, “Prognostic Value of Auditory Brainstem Response for Neurologic Outcome in Patients with Neonatal Indirect Hyperbilirubinemia,” Journal of Child Neurology, Vol. 16, No. 10, 2001, pp. 772-775. doi:10.1177/088307380101601014

[6]   P. Sharma, N. P. Chhangani, K. R. Meena, R. Jora, N. Sharma and B. D. Gupta, “Brainstem Evoked Response Audiometry (BAER) in Neonates with Hyperbilirubinemia,” Indian Journal of Pediatrics, Vol. 73, No. 5, 2006, pp. 413-416. doi:10.1007/BF02758564

[7]   C. Oysu, I. Aslan, A. Ulubil and N. Baserer, “Incidence of Cochlear Involvement in Hyperbilirubinemic Deafness,” Annals of Otology, Rhinology and Laryngology, Vol. 111, No. 11, 2002, pp. 1021-1025.

[8]   A. Poblano, I. Chayo, J. Ibarra and E. Rueda, “Electro-physiological and Behavioral Methods in Early Detection of Hearing Impairment,” Archives of Medical Research, Vol. 31, No. 1, 2000, pp. 75-80. doi:10.1016/S0188-4409(99)00060-0

[9]   C. L. Pereira, A. M. Aguilar, F. Rivera, L. Cruz, I. Santos and A. Poblano, “Concordance between Neurologic Screening Test and Neurologic Examination in Newborns,” Clinical Pediatrics (Philadelphia), Vol. 45, No. 4, 2006, pp. 315-323.

[10]   S. P. Harrison and I. M. Barlow, “Three Direct Spectrophotometric Methods for Determination of Total Bilirubin in Neonatal and Adult Serum, Adapted to the Technicon RA-1000 Analyzer,” Clinical Chemistry, Vol. 35, No. 9, 1989, pp. 1980-1986.

[11]   J. How and M. E. Lutman, “Transient Evoked Otoacoustic Emissions Input-Output Function Variation in a Large Sample of Neonates and Implications for Hearing Screening,” International Journal of Audiology, Vol. 46, No. 11, 2007, pp. 670-679. doi:10.1080/14992020701438813

[12]   M. R. Nuwer, M. Aminoff, D. Goodin, S. Matsuoka, F Mauguiere, A. Star A and J. F. Vibert, “IFCN Recommended Standards from Brain-Stem Auditory Evoked Potentials. Report of IFCN Committee,” Electroence-phalography and Clinical Neurophysiology, Vol. 91, No. 1, 1994, pp. 112-117. doi:10.1016/0013-4694(94)90013-2

[13]   A. Poblano, A. Belmont, J. Sosa, J. Ibarra, Y. Rosas, V. López and S. Garza, “Effects of Prenatal Exposure to Carbamazepine on Brainstem Auditory Evoked Potentials in Infants of Epileptic Mothers,” Journal of Child Neurology, Vol. 17, No. 5, 2002, pp. 364-368. doi:10.1177/088307380201700510

[14]   A. Poblano, A. Belmont, J. Sosa, J. Ibarra, A. M. Vargas, G. Limón and C. Martínez, “Amikacin Alters Auditory Brainstem Conduction Time in Newborns,” Journal of Perinatal Medicine, Vol. 31, No. 3, 2003, pp. 237-241. doi:10.1515/JPM.2003.032

[15]   M. Ferrán-Aranaz, “Statistical Analyses in SPSS for Windows,” Osbourne-McGraw Hill, Madrid, 2001, pp. 19-28.

[16]   M. F. Notter and J. W. Kending, “Differential Sensitivity of Neural Cells to Bilirubin Toxicity,” Experimental Neurology, Vol. 94, No. 3, 1986, pp. 670-682. doi:10.1016/0014-4886(86)90246-3

[17]   A. S. Falcao, C. Bellarosa, A. Fernández, M. A. Brito, R. F. Silva, C. Tiribelli and D. Brites, “Role of Multidrug Ressistence-Associated Protein 1 Expression in the in Vitro Susceptibility of Rat Nerve Cell to Unconjugated Bilirubin,” Neuroscience, Vol. 144, No. 3, 2007, pp. 878-888. doi:10.1016/j.neuroscience.2006.10.026

[18]   P. Govaert, M. Lequin, R. Swarte, S. Robben, R. de Coo, N. Weisglas-Kuperus, Y. de Rijke, M. Sinassappel and J. Barkovich, “Changes in Globus Pallidus with (pre) Term Kernicterus,” Pediatrics, Vol. 112, No. 6, 2003, pp. 1256-1263. doi:10.1542/peds.112.6.1256

[19]   M. C. Harris, J. C. Bernbaum, J. Polin, R. Zimmerman and R. Polin, “Developmental Follow-Up of Breastfed Term and Near-Term Infants with Marked Hyperbilirubinemia,” Pediatrics, Vol. 107, No. 5, 2001, pp. 1075-1080. doi:10.1542/peds.107.5.1075

[20]   C. E. Ahlfors, S. B. Amin and A. E. Parker, “Unbound Bilirubin Predicts Abnormal Automated Auditory Brain-stem Responses in a Diverse Newborns Population,” Journal of Perinatology, Vol. 29, No. 4, 2009, pp. 305-309. doi:10.1038/jp.2008.199

[21]   C. G. Nwaesei, J. van Aerde, M. Boyden and M. Peerlman, “Changes in Auditory Brainstem Responses in Hyperbilirubinemic Infants before and after Exchange Transfusion,” Pediatrics, Vol. 74, No. 5, 1984, pp. 800-803.

[22]   K. A. Jangaard, D. B. Fell, L. Doods and A. C. Allen, “Outcomes in a Population of Healthy Term and Near-Term Infants with Serum Bilirubin Levels of ≥325 μmol/L (≥19 mg/dL) Who Were Born in Nova Scotia, Canada, between 1994 and 2000,” Pediatrics, Vol. 122, No. 1, 2008, pp. 119-124. doi:10.1542/peds.2007-0967

[23]   K. Xionis, Y. Weirather, H. Mavoori, S. H. Shaha and L. M. Iwamoto, “Extremely Low Birth Weight Infants Are at High Risk for Auditory Neuropathy,” Journal of Perinatology, Vol. 27, No. 11, 2007, pp. 718-723. doi:10.1038/sj.jp.7211803

[24]   S. B. Amin, D. Prinzing and G. Myers, “Hyper-bilirubinemia and Language Delay in Premature Infants,” Pediatrics, Vol. 123, No. 1, 2009, pp. 327-321. doi:10.1542/peds.2007-3723

 
 
Top