[1] A. K. Easton, G. Nemhauser and M. Trick, “The Traveling Tournament Problem: Description and Benchmarks,” Lecture Notes in Computer Science, Vol. 2239, 2001, pp. 580-585. doi:10.1007/3-540-45578-7_43
[2] J. C. Bean and J. R. Birge, “Reducing Travelling Costs and Player Fatigue in the National Basketball Association,” Interfaces, Vol. 10, No. 3, 1980, pp. 98-102. doi:10.1287/inte.10.3.98
[3] A. Anagnostopoulos, L. Michel, P. Van Hentenryck and Y. Vergados, “A Simulated Annealing Approach to the Traveling Tournament Problem,” International Workshop on Integration of AI and OR Techniques, Montreal, 2003.
[4] J. A. M. Schreuder, “Constructing Timetables for Sport Competitions,” Mathematical Programming Study, Vol. 13, 1980, pp. 58-67. doi:10.1007/BFb0120907
[5] D. de Werra, “Scheduling in Sports,” Studies on Graphs and Discrete Programming, 1981, pp. 381-395.
[6] D. de Werra, “Some Models of Graphs for Scheduling Sports Competitions,” Discrete Applied Mathematics, Vol. 21, No. 1, 1988, pp. 47-65. doi:10.1016/0166-218X(88)90033-9
[7] R. T. Campbell and D. S. Chen, “A Minimum Distance Basketball Scheduling Problem,” Management Science in Sports, Studies in the Management Sciences, Vol. 4, 1976, pp. 15-26.
[8] D. Costa, “An Evolutionary Tabu Search Algorithm and the NHL Scheduling Problem,” Information Systems and Operational Research, Vol. 33, 1995, pp. 161-178.
[9] M. B. Wright, “Scheduling Fixtures for Basketball New Zealand,” Computers & Operations Research, Vol. 33, No. 7, 2006, pp. 1875-1893. doi:10.1016/j.cor.2004.09.024
[10] T. Benoist, F. Laburthe and B. Rottembourg, “Lagrange Relaxation and Constraint Programming Collaborative Schemes for Traveling Tournament Problems,” International Workshop on Integration of AI and OR Techniques, Ashford, Kent, 2001.
[11] K. Easton, G. Nemhauser and M. Trick, “Solving the Traveling Tournament Problem: A Combined Integer Programming and Constraint Programming Approach,” Lecture Notes in Computer Science, Vol. 2740, 2003, pp. 100-109. doi:10.1007/978-3-540-45157-0_6
[12] J. H. Lee, Y. H. Lee and Y. H. Lee, “Mathematical Modeling and Tabu Search Heuristic for the Traveling Tournament Problem,” Lecture Notes in Computer Science, Vol. 3982, 2006, pp. 875-884. doi:10.1007/11751595_92
[13] K. K. H. Cheung, “Solving Mirrored Traveling Tournament Problem Benchmark Instances with Eight Teams,” Discrete Optimization, Vol. 5, No. 1, 2008, pp. 138-143. doi:10.1016/j.disopt.2007.11.003
[14] N. Fujiwara, S. Imahori, T. Matsui and R. Miyashiro, “Constructive Algorithms for the Constant Distance Traveling Tournament Problem,” The International Series of Conferences on the Practice and Theory of Automated Timetabling, 2006, pp. 402-405.
[15] L. D. Gaspero and A. Schaerf, “A Composite-Neighbor- hood Tabu Search Approach to the Traveling Tournament Problem,” Heuristics, Vol. 13, No. 2, 2007, pp. 189-207. doi:10.1007/s10732-006-9007-x
[16] S. Urrutia and C. C. Ribeiro, “Maximizing Breaks and Bounding Solutions to the Mirrored Traveling Tournament Problem,” Discrete Applied Mathematics, Vol. 154, No. 13, 2006, pp. 1932-1938. doi:10.1016/j.dam.2006.03.030
[17] M. A. Trick, “Michael Trick’s Guide to Sports Scheduling”. http://mat.gsia.cmu.edu/TOURN/
[18] D. T. Connelly, “General Purpose Simulated Annealing,” Journal of Operations Research, Vol. 43, 1992, pp. 495- 505.
[19] R. Lewis and J. Thompson, “On the Application of Graph Coloring Techniques in Round-Robin Sports Scheduling,” Computers and Operations Research, Vol. 38, No. 1, 2011, pp. 190-204. doi:10.1016/j.cor.2010.04.012
[20] J. Kennedy and R. C. Eberhart, “A Discrete Binary Version of the Particle Swarm Algorithm,” World Multiconference on Systemics, Cybernetics and Informatics, Piscatawary, 1997, pp. 4104-4109.
[21] A. Lim, B. Rodrigues and X. Zhang, “A Simulated Annealing and Hill-Climbing Algorithm for the Traveling Tournament Problem,” European Journal of Operational Research, Vol. 174, 2006, pp. 1459-1478. doi:10.1016/j.ejor.2005.02.065
[22] M. B. Wright, “Scheduling Fixtures for Basketball New Zealand,” Computers & Operations Research, Vol. 33, No. 7, 2006, pp. 1875-1893. doi:10.1016/j.cor.2004.09.024