Minimizing Complementary Pivots in a Simplex-Based Solution Method for a Quadratic Programming Problem

Elias Munapo^{*}

Show more

References

[1] S. Burer and D. Vandenbussche, “A Finite Branch-and- Bound Algorithm for Nonconvex Quadratic Programs with Semidefinite Relaxations,” Mathematical Programming, Series A, Vol. 113, No. 2, 2008, pp. 259-282.
doi:10.1007/s10107-006-0080-6

[2] S. Burer and D. Vandenbussche, “Globally Solving Box- Constrained Nonconvex Quadratic Programs with Semi- definite-Based Finite Branch-and-Bound,” Computational Optimization and Applications, Vol. 43, No. 2, 2009, pp. 181-195.

[3] R. M. Freund, “Solution Methods for Quadratic Optimization: Lecture notes,” Massachussets Institute of Technology, 2002.

[4] S. T. Liu and R.-T. Wang, “A Numerical Solution Methods to Interval Quadratic Programming,” Applied Mathematics and Computation, Vol. 189, No. 2, 2007, pp. 1274-1281. doi:10.1016/j.amc.2006.12.007

[5] B. A. McCarl, H. Moskowitz and H. Furtan, “Quadratic Programming Applications,” Omega, Vol. 5, No. 1, 1977, pp. 43-55. doi:10.1016/0305-0483(77)90020-2

[6] J. J. Moré and G. Toraldo, “Algorithms for Bound Constrained Quadratic Programming Problems,” Numerische Mathematik, Vol. 55, No. 4, 1989, pp. 377-400.
doi:10.1007/BF01396045

[7] G. B. Dantzig, “Linear Programming and Extensions,” Princeton University Press, Princeton, 1998.

[8] X.-W. Liu and Y.-X. Yuan, “A Null-Space Primal-Dual Interior-Point Algorithm for Nonlinear Optimization with Nice Convergence Properties,” Mathematical Programming, Vol. 125, No. 1, 2010, pp. 163-193.
doi:10.1007/s10107-009-0272-y

[9] S. Carvalho and A. Oliveira, “Interior-Point Methods Applied to the Predispatch Problem of a Hydroelectric System with Scheduled Line Manipulations,” American Journal of Operations Research, Vol. 2, No. 2, 2012, pp. 266-271. doi:10.4236/ajor.2012.22032

[10] W.-Y. Sun and Y.-X. Yuan, “Optimization Theory and Methods: Nonlinear Programming,” Springer, New York, 2006.

[11] O.K. Gupta, “Applications of Quadratic Programming,” Journal of Information and Optimization Sciences, Vol. 16, No. 1, 1995, pp. 177-194.

[12] R. Horst, P. M. Pardalos and N. V. Thoai, “Introduction to Global Optimization: Nonconvex Optimization and its Applications,” 2nd Edition, Kluwer Academic Publishers, Dordrecht, 2000.

[13] H. A. Taha, “Operations Research: An Introduction,” 9th Edition, Pearson, 2011.

[14] W. L. Winston, “Operations Research: Applications and Algorithms,” 4th Edition, Thomson Brooks/Cole, Belmont, 2004.