OJOp  Vol.1 No.1 , September 2012
Roughly B-invex Multi-Objective Programming Problems
Abstract: In this paper, we shall be interested in characterization of efficient solutions for special classes of problems. These classes consider roughly B-invexity of involved functions. Sufficient and necessary conditions for a feasible solution to be an efficient or properly efficient solution are obtained.
Cite this paper: T. Emam, "Roughly B-invex Multi-Objective Programming Problems," Open Journal of Optimization, Vol. 1 No. 1, 2012, pp. 1-7. doi: 10.4236/ojop.2012.11001.

[1]   B. D. Craven, “Control and Optimization,” Chapman and Hall, London, 1995.

[2]   H. X. Phu, “Six Kind of Roughly Convex Functions,” Journal of Optimization Theory and Applications, Vol. 92, No. 2, 1997, pp. 357-375. doi:10.1023/A:1022611314673

[3]   S. K. Mishra, S. Y. Wang and K. K. Lai, “Generalized Convexity and Vector Optimization, Nonconvex Optimization and Its Applications,” Springer-Verlag, Berlin, 2009.

[4]   S. K. Mishra and G. Giorgi, “Invexity and Optimization, Nonconvex Optimization and Its Applications,” SpringerVerlag, Berlin, 2008.

[5]   S. K. Suneja, S. Khurana and Vani, “Generalized Nonsmooth Invexity over Cones in Vector Optimization,” European Journal of Operational Research, Vol. 186, No. 1, 2008, pp. 28-40. doi:10.1016/j.ejor.2007.01.047

[6]   S. Komlosi, T. Rapesak and S. Schaible, “Generalized Convexity,” Springer-Verlag, Berlin, 1994.

[7]   M. A. Hanson, “On Sufficiency of the Kuhn-Tucker Conditions,” Journal of Mathematical Analysis and Applications, Vol. 80, No. 2, 1981, pp. 545-550. doi:10.1016/0022-247X(81)90123-2

[8]   C. R. Bector, S. K. Sunela and C. Singh, “Generalization of Preinvex and B-vex Functions,” Journal of Optimization Theory and Applications, Vol. 76, No. 3, 1993, pp. 277-287. doi:10.1007/BF00939383

[9]   T. Emam, “Roughly B-invex Programming Problems,” Calcolo, Vol. 48, No. 2, 2011, pp. 173-188. doi:10.1007/s10092-010-0034-5

[10]   T. Morsy, “A Study on Generalized Convex Mathematical Programming Problems, Master Thesis, Faculty of Science,” Suez Canal University, Egypt, 2003.

[11]   V. Chankong and Y. Y. Haimes, “Multiobjective Decision Making Theory and Methodology,” North-Holland, Amsterdam, 1983.

[12]   M. S. Bazaraa and C. M. Shetty, “Nonlinear Programming-Theory and Algorithms,” John Wiley and Sons, Inc., New York, 1979.

[13]   T. Weir and B. Mond, “Generalized Convexity and Duality in Multiple Objective Programming,” Bulletin of the Australian Mathematical Society, Vol. 39, No. 2, 1989, pp. 287-299. doi:10.1017/S000497270000277X