Primality Testing Using Complex Integers and Pythagorean Triplets

Boris Verkhovsky^{*}

Show more

References

[1] L. M. Adleman, C. Pomerance and R. S. Rumley, “On Distinguishing Prime Numbers from Composite Numbers”, The Annals of Mathematics, Vol. 117, No. 1, 1983, pp. 173-206. doi:10.2307/2006975

[2] C. Pomerance, “Paul Erdos, Number Theorist Extraordinaire”, The Notices of the American Mathematical Society, Vol. 45, 1998, pp. 19-23.

[3] B. Verkhovsky, “Multiplicative Inverse Algorithm and Its Space Complexity”, Annals of European Academy of Sciences, Vol. 2, 2004, pp. 110-124.

[4] M. Agrawal, N. Kayal and N. Saxena, “PRIMES Is in P”, The Annals of Mathematics, Vol. 160, No. 2, 2002, pp. 781-793.

[5] W. R. Alford, A. Granville and C. Pomerance, “There Are Infinitely Many Carmichael Numbers”, The Annals of Mathematics, Vol. 140, No. 3, 1994, pp. 703-722.

[6] C. F. Gauss, “Disquisitiones Arithmeticae”, Yale University Press, New Haven, 1986.

[7] T. ElGamal, “A Public Key Cryptosystem and a Signature Scheme Based on Discrete Log-Arithmetic”, IEEE Transactions on Information Theory, Vol. 31, No. 4, 1985, pp. 469-472. doi:10.2307/2006975

[8] N. Koblitz, A. Menezes and S. Vanstone, “The State of Elliptic Curve Cryptography”, Designs, Codes and Cryptography, Vol. 19, No. 2-3, 2000, pp. 173-193.
doi:10.1023/A:1008354106356

[9] E. Gethner, S. Wagon and B. Wick, “A Stroll through the Gaussian Primes”, American Mathematics Monthly, Vol. 105, No. 4, 1998, pp. 327-337. doi:10.2307/2589708

[10] B. Verkhovsky, “Double-Moduli Gaussian Encryption/Decryption with Primary Residues and Secret Controls”, International Journal of Communications, Network and System Sciences, Vol. 4, No. 7, 2011, pp. 475-481.
doi:10.4236/ijcns.2011.47058

[11] A. Karatsuba and Yu. Ofman, “Multiplication of Multi- Digit Numbers on Automata”, Soviet Physics Doklady, Vol. 7, 1963, pp. 595-596.

[12] D. Knuth, “The Art of Computer Programming, Vol. 1: Fundamental Algorithms”, 2d Edition, Addison-Wesley, Boston, 1973.

[13] B. Verkhovsky, “Hardness of Cryptanalysis of Public Keys Crypto-Systems with Known Timing of Modular Exponentiation”, Advances in Computer Cybernetics, Vol. 6, 1998, pp. 80-84.

[14] B. Verkhovsky, “Space Complexity of Algorithm for Modular Multiplicative Inverse”, International Journal of Communications, Network and System Sciences, Vol. 4, No. 6, 2011, pp. 357-363. doi:10.4236/ijcns.2011.46041

[15] R. D. Carmichael, “Note on a New Number Theory Function”, Bulletin of American Mathematical Society, Vol. 16, No. 5, 1910, pp. 232-238.
doi:10.1090/S0002-9904-1910-01892-9

[16] R. G. E. Pinch, “The Carmichael Numbers up to 1015”, Mathematics of Computation, Vol. 61, 1993, pp. 381-391.

[17] H. Dubner, “A New Method for Producing Large Carmichael Numbers”, Mathematics of Computation, Vol. 53, 1989, pp. 411-414.
doi:10.1090/S0025-5718-1989-0969484-8

[18] B. Verkhovsky and A. Mutovic, “Primality Testing Algorithm Using Pythagorean Integers”, Proceedings of International Computer Science and Information Systems Conference, Athens, June 2005.