ENG  Vol.4 No.8 , August 2012
A Study on Anchoring Ability of Three-Leg Micro Intestinal Robot
Abstract: This paper proposes an anchoring and extending micro intestinal robot for medical inspection and surgery propose. The three-leg anchoring method is discussed in detail, and micro robot phantom model is used to test anchoring related parameters for mechanical design. A prototype is designed and fabricated base on the experiment results and is tested in in-vitro experiment. The prototype is locomotive in a pig small intestine under a diameter limitation.
Cite this paper: W. Lin and G. Yan, "A Study on Anchoring Ability of Three-Leg Micro Intestinal Robot," Engineering, Vol. 4 No. 8, 2012, pp. 477-483. doi: 10.4236/eng.2012.48062.

[1]   L. Lin, L. Gao, G. Yan and R. Rong, “A Study on the Endoscope System Driven by Squirmy Robot,” IEEE International Conference on Intelligent Processing Systems, Beijing, 28-31 October 1997, pp. 75-81.

[2]   K. Wang, G. Yan, P. Jiang and D. Ye, “A Wireless Robotic Endoscope for Gastrointestine,” IEEE Transactions on Robotics, Vol. 24, No. 1, 2008, pp. 206-210. doi:10.1109/TRO.2008.915418

[3]   M. Quirini, R. J. Webster, A. Menciassi and P. Dario, “Design of a Pill-Sized 12-Legged Endoscopic Capsule Robot,” IEEE International Conference on Robotics and Automation, Roma, 10-14 April 2007, pp. 1856-1862.

[4]   M. Quirini, A. Menciassi, S. Scapellato, et al., “Feasibility Proof of a Legged Locomotion Capsule for the GI Tract,” Gastrointestinal Endoscopy, Vol. 67, No. 7, 2008, pp. 1153-1158. doi:10.1016/j.gie.2007.11.052

[5]   S. Park, H. Park, S. Park and B. Kim, “A Paddling Based Locomotive Mechanism for Capsule Endoscopes,” Journal of Mechanical Science and Technology, Vol. 20, No. 7, 2006, pp. 1012-1018. doi:10.1007/BF02916000

[6]   H. M. Kim, S. Yang, J. Kim, et al., “Active Locomotion of a Paddling-Based Capsule Endoscope in an in Vitro and in Vivo Experiment (with Videos),” Gastrointestinal Endoscopy, Vol. 72, No. 2, 2010, pp. 381-387. doi:10.1016/j.gie.2009.12.058

[7]   Y. Zhang, S. Jiang, X. Zhang, H. Yu, D. Wang and D. Guo, “Dynamic Characteristics of an Intestine Capsule Robot with Variable Diameter,” Chinese Science Bulletin, Vol. 55, No. 17, 2010, pp. 1813-1821. doi:10.1007/s11434-009-3370-6

[8]   M. Simi, P. Valdastri, C. Quaglia, A. Menciassi and P. Dario, “Design, Fabrication, and Testing of a Capsule with Hybrid Locomotion for Gastrointestinal Tract Exploration,” IEEE/ASME Transactions on Mechatronics, Vol. 15, No. 2, 2010, pp. 170-180.

[9]   D. Dodou, P. Breedveld and P. A. Wieringa, “Stick, Unstick, Restick Sticky Films in the Colon,” Minimally Invasive Therapy & Allied Technologies, Vol. 15, No. 5, 2006, pp. 286-295. doi:10.1080/13645700600929144

[10]   J. Kwon, E. Cheung, S. Park and M. Sitti, “Friction Enhancement via Micro-Patterned Wet Elastomer Adhesives on Small Intestinal Surfaces,” Biomedical Materials, Vol. 1, No. 4, 2006, p. 216. doi:10.1088/1748-6041/1/4/007

[11]   P. Ciarletta, P. Dario, F. Tendick and S. Micera, “Hyperelastic Model of Anisotropic Fiber Reinforcements within Intestinal Walls for Applications in Medical Robotics,” The International Journal of Robotics Research, Vol. 28, No. 10, 2009, pp. 1279-1288. doi:10.1177/0278364909101190

[12]   S. Tognarelli, V. Pensabene, S. Condino, et al., “A Pilot Study on a New Anchoring Mechanism for Surgical Applications Based on Mucoadhesives,” Minimally Invasive Therapy & Allied Technologies, Vol. 20, No. 1, 2011, pp. 3-13. doi:10.3109/13645706.2010.496955

[13]   H. Gregersen and G. Kassab, “Biomechanics of the Gastrointestinal Tract,” Neurogastroenterology & Motility, Vol. 8, No. 4, 1996, pp. 277-297. doi:10.1111/j.1365-2982.1996.tb00267.x

[14]   K. Wang and G. Yan, “Micro Robot Prototype for Colonoscopy and in Vitro Experiments,” Journal of Medical Engineering & Technology, Vol. 31, No. 1, 2007, pp. 24-28. doi:10.1080/03091900500233759