Back
 WJCMP  Vol.2 No.3 , August 2012
On the Relaxational Properties of a Quantum Dipolar Spin Glasses Model
Abstract: The dissipative part of the linear magnetic dynamic susceptibility of dipolar spin glasses is considered. Due to the transition of the system (at enough high concentration of the magnetic dipoles) from a paramagnetic phase to magnetic dipolar one, an anomalous temperature dependence of the dissipative part of the magnetic susceptibility is found. Our results are in qualitative agreement with experiments performed on the dipolar-coupled Ising magnet LiHoxY1-xF4.
Cite this paper: G. Busiello, "On the Relaxational Properties of a Quantum Dipolar Spin Glasses Model," World Journal of Condensed Matter Physics, Vol. 2 No. 3, 2012, pp. 124-128. doi: 10.4236/wjcmp.2012.23020.
References

[1]   D. H. Reich, B. Ellman, Y. Yang and T. F. Rosenbaum, “Dipolar Magnets and Glasses: Neutron-Scattering, Dynamical, and Calorimetric Studies of Randomly Distrib- uted Ising Spins,” Physical Review B, Vol. 42, No. 7, 1990, pp. 4631-4644. doi:10.1103/PhysRevB.42.4631

[2]   W. Wu, B. Ellman, T. F. Rosenbaum, G. Aeppli and D. M. Reich, “From Classical to Quantum Glass,” Physical Review Letters, Vol. 67, No. 15, 1991, pp. 2076-2079. doi:10.1103/PhysRevLett.67.2076

[3]   W. Wu, D. Bitko, T. F. Rosenbaum and G. Aeppli, “Quenching of the Nonlinear Susceptibility at a T = 0 Spin Glass Transition,” Physical Review Letters, Vol. 71, No. 12, 1993, pp. 1919-1922. doi:10.1103/PhysRevLett.71.1919

[4]   J. Brooke, T. F. Rosenbaum and G. Aeppli, “Tunable Quantum Tunnelling of Magnetic Domain Walls,” Nature, Vol. 413, 2001, pp. 610-613. doi:10.1038/35098037

[5]   J. Snider and C. C. Yu, “Absence of Dipole Glass Transition for Randomly Dilute Classical Ising Dipoles,” Physical Review, Vol. 72, 2005, Article ID: 214203. doi:10.1103/PhysRevB.72.214203

[6]   P. E. Jonsson, R. Mathieu, W. Werndorfer, A. M. Tkachuk and B. Barbara, “Absence of Conventional Spin-Glass Transition in the Ising Dipolar System LiHoxY1-xF4,” Physical Review Letters, Vol. 98, No. 25, 2007, Article ID: 256403. doi:10.1103/PhysRevLett.98.256403

[7]   C. Ancona-Torres, D. M. Silevitch, G. Aeppli and T. F. Rosenbaum, “Quantum and Classical Glass Transitions in LiHoxY1-xF4,” Physical Review Letters, Vol. 101, No. 5, 2008, Article ID: 057201. doi:10.1103/PhysRevLett.101.057201

[8]   Sh. Akhmadullin and R. V. Saburova, “Features of the Molecular Field Distribution Function of Electric Dipoles in Crystals,” Physica Status Solidi (b), Vol. 112, No. 1, 1982, pp. 15-18. doi:10.1002/pssb.2221120202

[9]   Sh. Akhmadullin and R. V. Saburova, “Phonon Scattering by Paraelectrical Centers in Crystals I. General,” Physica Status Solidi (b), Vol. 112, No. 2, 1982, pp. 367-378. doi:10.1002/pssb.2221120202

[10]   Sh. Akhmadullin and R. V. Saburova, “Phonon Scattering by Paraelectrical Centers in Crystals II. Lowest Order Approximation,” Physica Status Solidi (b), Vol. 113, No. 1, 1982, pp. 137-145. doi:10.1002/pssb.2221130113

[11]   Sh. Akhmadullin and R. V. Saburova, “Low Temperature Anomalies of the Sound Absorption by Interacting Paraelectrical Centers in Crystals,” Fizika Nizkih Temperature, Vol. 10, 1984, pp. 969-977.

[12]   G. Busiello and R. V. Saburova, “Soft Mode and Spin-Glass Like Transition in Insulating Glass,” International Journal of Modern Physics B, Vol. 13, No. 7, 1999, pp. 819-831. doi:10.1142/S0217979299000680

[13]   G. Busiello and R. V. Saburova, “Tunneling Electric Dipole Defects in Insulating Glass,” Physica B, Vol. 263-264, 1999, pp. 324-326. doi:10.1016/S0921-4526(98)01370-2

[14]   G. Busiello and R. V. Saburova, “Low-Temperature Orientational-Glass-Like Phase Transition in Glass Model,” Physica B, Vol. 245, No. 1, 1998, pp. 27-33. doi:10.1016/S0921-4526(97)00451-1

[15]   S. A. Altshuler and B. M. Kozirev, “Elektronny Paramagnitny Rezonans Soyedineniy Elementov Promezhutochnykh Grupp,” Nauka, Moskva, 1972.

[16]   U. H. Kopvillem and R. V. Saburova, “Paraelektricheskii Rezonans. Izolatelstvo Nauka,” Moskva, 1982.

[17]   R. Pirc and P. Gosar, “Green’s Function Approach to Paraelastic Relaxation,” Physical Kondens Materie, Vol. 9, No. 4, 1969, pp. 377-398.

[18]   M. W. Klein, C. Held and E. Zuro, “Dipole Interactions among Polar Defects: A Self-Consistent Theory with APPLICation to OH-Impurities in KCl,” Physical Review B, Vol. 13, No. 8, 1976, pp. 3576-3589. doi:10.1103/PhysRevB.13.3576

[19]   D. N. Zubarev, “Neravnovesnayastatisticheskaya Termodinamika. Izdatelstvo Nauka,” Moskva, 1971.

[20]   G. Busiello and R. V. Saburova, “On the Nonlinear Susceptibility of the Quantum Ising Spin Glass Model in a Random Field,” Modern Physics Letters B, Vol. 10, No. 26, 1996, pp. 1295-1300. doi:10.1142/S0217984996001462

[21]   G. Busiello, R. V. Saburova and V. G. Sushkova, “Dynamic Nonlinear (Cubic) Susceptibility in Quantum Ising Spin Glass,” Solid State Communications, Vol. 123, No. 1-2, 2002, pp. 37-42. doi:10.1016/S0038-1098(02)00219-3

 
 
Top