JBBS  Vol.2 No.3 , August 2012
How Many Electrodes Are Really Needed for EEG-Based Mobile Brain Imaging?
Abstract: A noninvasive method for imaging the human brain during mobile activities could have far reaching benefits for studies of human motor control, for research and treatment of neurological disabilities, and for brain-controlled powered prosthetic limbs or orthoses. Several recent studies have demonstrated that electroencephalography (EEG) can be used to image the brain during locomotion provided that signal processing techniques, such as independent Component Analysis (ICA), are used to parse electrocortical activity from artifact contaminated EEG. However, these studies used high-density 256-channel EEG sensor arrays, which are likely too time-consuming to setup in a clinical or field setting. Therefore, it is important to evaluate how reducing the number of EEG channel signals affects the electrocortical source signals that can be parsed from EEG recorded during standing and walking while concurrently performing a visual oddball discrimination task. Specifically, we computed temporal and spatial correlations between electrocortical sources parsed from high-density EEG and electrocortical sources parsed from reduced-channel subsets of the original high-density EEG. For this task, our results indicate that on average an EEG montage with as few as 35 channels may be sufficient to record the two most dominate electrocortical sources (temporal and spatial R2 > 0.9). Correlations for additional electrocortical sources decreased linearly such that the least dominant sources extracted from the 35 channel dataset had temporal and spatial correlations of approximately 0.7. This suggests that for certain applications the number of EEG sensors used for mobile brain imaging could be vastly reduced, but researchers and clinicians must consider the expected distribution of relevant electrocortical sources when determining the number of EEG sensors necessary for a particular application.
Cite this paper: T. Lau, J. Gwin and D. Ferris, "How Many Electrodes Are Really Needed for EEG-Based Mobile Brain Imaging?," Journal of Behavioral and Brain Science, Vol. 2 No. 3, 2012, pp. 387-393. doi: 10.4236/jbbs.2012.23044.

[1]   S. Makeig, K. Gramann, T. P. Jung, T. J. Sejnowski and H. Poizner, “Linking Brain, Mind and Behavior,” International Journal of Psychophysiology, Vol. 73, No. 2, 2009, pp. 95-100. doi:10.1016/j.ijpsycho.2008.11.008

[2]   A. F. Rabbi, K. Ivanca, A. V. Putnam, A. Musa, C. B. Thaden and R. Fazel-Rezai, “Human Performance Evaluation Based on EEG Signal Analysis: A Prospective Review,” Annual International Conference of the IEEE on Engineering in Medicine and Biology Society, EMBC 2009, Minneapolis, 3-6 September 2009, pp. 1879-1882.

[3]   W. Klimesch, “EEG Alpha and Theta Oscillations Reflect Cognitive and Memory Performance: A Review and Analysis,” Brain Research Reviews, Vol. 29, No. 2-3, 1999, pp. 169-195. doi:10.1016/S0165-0173(98)00056-3

[4]   R. D. Buechler, A. J. Rodriguez, B. D. Lahr and E. L. So, “Ictal Scalp EEG Recording during Sleep and Wakefulness: Diagnostic Implications for Seizure Localization and Lateralization,” Epilepsia, Vol. 49, No. 2, 2008, pp. 340-342. doi:10.1111/j.1528-1167.2007.01320.x

[5]   L. A. Rudzinski and K. J. Meador, “Epilepsy,” Neurology, Vol. 76, No. 7, 2011, pp. S20-S25. doi:10.1212/WNL.0b013e31820c3636

[6]   R. De Raedt, E. Franck, K. Fannes and E. Verstraeten, “Is the Relationship between Frontal EEG Alpha Asymmetry and Depression Mediated by Implicit or Explicit Self-Esteem,” Biological Psychology, Vol. 77, No. 1, 2008, pp. 89-92. doi:10.1016/j.biopsycho.2007.06.004

[7]   D. L. Santesso, S. J. Segalowitz, A. R. Ashbaugh, M. M. Antony, R. E. McCabe and L. A. Schmidt, “Frontal EEG Asymmetry and Sensation Seeking in Young Adults,” Biological Psychology, Vol. 78, No. 2, 2008, pp. 164-172. doi:10.1016/j.biopsycho.2008.02.003

[8]   K. Jerbi, J. R. Vidal, J. Mattout, E. Maby, F. Lecaignard, T. Ossandon, C. M. Hamamé, S. S. Dalal, R. Bouet, J. P. Lachaux, et al., “Inferring Hand Movement Kinematics from MEG, EEG and Intracranial EEG: From Brain-Machine Interfaces to Motor Rehabilitation,” IRBM, Vol. 32, No. 1, 2011, pp. 8-18. doi:10.1016/j.irbm.2010.12.004

[9]   K.-R. Müller, M. Tangermann, G. Dornhege, M. Krauledat, G. Curio and B. Blankertz, “Machine Learning for Real-Time Single-Trial EEG-Analysis: From Brain-Computer Interfacing to Mental State Monitoring,” Journal of Neuroscience Methods, Vol. 167, No. 1, 2008, pp. 82-90. doi:10.1016/j.jneumeth.2007.09.022

[10]   P. G. Patil and D. A. Turner, “The Development of Brain-Machine Interface Neuroprosthetic Devices,” Neurothe-rapeutics, Vol. 5, No. 1, 2008, pp. 137-146. doi:10.1016/j.nurt.2007.11.002

[11]   T. J. Sullivan, S. R. Deiss, J. Tzyy-Ping and G. Cauwenberghs, “A Brain-Machine Interface Using Dry-Contact, Low-Noise EEG Sensors,” IEEE International Symposium on Circuits and Systems, ISCAS 2008, Seattle, 18-21 May 2008, pp. 1986-1989.

[12]   D. C. Godlove, “Eye Movement Artifact May Account for Putative Frontal Feedback-Related Potentials in Nonhuman Primates,” The Journal of Neuroscience, Vol. 30, No. 12, 2010, pp. 4187-4189. doi:10.1523/JNEUROSCI.0449-10.2010

[13]   T. P. Jung, S. Makeig, C. Humphries, T. W. Lee, M. J. McKeown, V. Iragui and T. J. Sejnowski, “Removing Electroencephalographic Artifacts by Blind Source Separation,” Psychophysiology, Vol. 37, No. 2, 2000, pp. 163-178. doi:10.1111/1469-8986.3720163

[14]   T. P. Jung, S. Makeig, M. Westerfield, J. Townsend, E. Courchesne and T. J. Sejnowski, “Removal of Eye Activity Artifacts from Visual Event-Related Potentials in Normal and Clinical Subjects,” Clinical Neurophysiology, Vol. 111, No. 10, 2000, pp. 1745-1758. doi:10.1016/S1388-2457(00)00386-2

[15]   J. T. Gwin, K. Gramann, S. Makeig and D. P. Ferris, “Electrocortical Activity Is Coupled to Gait Cycle Phase during Treadmill Walking,” Neuroimage, Vol. 54, No. 2, 2010, pp. 1289-1296.

[16]   J. T. Gwin, K. Gramann, S. Makeig and D. P. Ferris, “Removal of Movement Artifact from High-Density EEG Recorded during Walking and Running,” Journal of Neurophysiology, Vol. 103, No. 6, 2010, pp. 3526-3534.

[17]   K. Gramann, J. T. Gwin, N. Bigdely-Shamlo, D. P. Ferris and S. Makeig, “Visual Evoked Responses during Standing and Walking,” Frontiers in Human Neuroscience, Vol. 4, 2011, p. 202. doi:10.3389/fnhum.2010.00202

[18]   A. Delorme and S. Makeig, “EEGLAB: An Open Source Toolbox for Analysis of Single-Trial EEG Dynamics Including Independent Component Analysis,” Journal of Neuroscience Methods, Vol. 134, No. 1, 2004, pp. 9-21. doi:10.1016/j.jneumeth.2003.10.0099

[19]   A. Delorme, T. Sejnowski and S. Makeig, “Enhanced Detection of Artifacts in EEG Data Using Higher-Order Statistics and Independent Component Analysis,” Neuro-Image, Vol. 34, No. 4, 2007, pp. 1443-1449. doi:10.1016/j.neuroimage.2006.11.004

[20]   J. A. Palmer, K. Kreutz-Delgado and S. Makeig, “Super-Gaussian Mixture Source Model for ICA,” In: J. Rosca, D. Erdogmus, J. C. Principe and S. Haykin, Eds., Lecture Notes in Computer Science, Springer, Berlin 2006, pp. 854-861.

[21]   J. A. Palmer, S. Makeig, K. Kreutz-Delgado and B. D. Rao, “Newton Method for the ICA Mixture Model,” 33rd IEEE International Conferance on Acoustics and Signal Processing, Las Vegas, 3 March-4 April 2008, pp. 1805-1808.

[22]   S. Makeig, A. J. Bell, T. P. Jung and T. J. Sejnowski, “Independent Component Analysis of Electroencephalographic Data,” Advances in Neural Information Processing Systems, Vol. 8, 1996, pp. 145-151.

[23]   S. H. Collins, P. G. Adamczyk, D. P. Ferris and A. D. Kuo, “A Simple Method for Calibrating Force Plates and Force Treadmills Using an Instrumented Pole,” Gait Posture, Vol. 29, No. 1, 2009, pp. 59-64. doi:10.1016/j.gaitpost.2008.06.010

[24]   R. Oostenveld and T. F. Oostendorp, “Validating the Boundary Element Method for Forward and Inverse EEG Computations in the Presence of a Hole in the Skull,” Human Brain Mapping, Vol. 17, 2002, pp. 179-192. doi:10.1002/hbm.10061

[25]   S. Makeig, A. Delorme, M. Westerfield, T.-P. Jung, J. Townsend, E. Courchesne and T. J. Sejnowski, “Electroencephalographic Brain Dynamics Following Manually Responded Visual Targets,” PLOS Biology, Vol. 2, No. 6, 2004, p. 747. doi:10.1371/journal.pbio.0020176

[26]   S. Debener, A. Strobel, B. Sorger, J. Peters, C. Kranczioch, A. K. Engel and R. Goebel, “Improved Quality of Auditory Event-Related Potentials Recorded Simultaneously with 3-T fMRI: Removal of the Ballistocardiogram Artefact,” NeuroImage, Vol. 34, No. 2, 2007, pp. 587-597. doi:10.1016/j.neuroimage.2006.09.031

[27]   A. Londei, A. D’Ausilio, D Basso, C Sestieri, C Del Gratta, G. L. Romani and M. Olivetti Belardinelli, “Brain Network for Passive Word Listening as Evaluated with ICA and Granger Causality,” Brain Research Bulletin, Vol. 72, No. 4-6, 2007, pp. 284-292. doi:10.1016/j.brainresbull.2007.01.008

[28]   J. S. Damoiseaux, C. F. Beckmann, E. J. S. Arigita, F. Barkhof, P. Scheltens, C. J. Stam, S. M. Smith and S. A. R. B. Rombouts, “Reduced Resting-State Brain Activity in the ‘Default Network’ in Normal Aging,” Cerebral Cortex, Vol. 18, No. 8, 2008, pp. 1856-1864. doi:10.1093/cercor/bhm207

[29]   V. D. Calhoun, K. A. Kiehl and G. D. Pearlson, “Modulation of Temporally Coherent Brain Networks Estimated Using ICA at Rest and during Cognitive Tasks,” Human Brain Mapping, Vol. 29, No. 7, 2008, pp. 828-838. doi:10.1002/hbm.20581

[30]   H. Nam, T.-G. Yim, S. K. Han, J.-B. Oh and S. K. Lee, “Independent Component Analysis of Ictal EEG in Medial Temporal Lobe Epilepsy,” Epilepsia, Vol. 43, No. 2, 2002, pp. 160-164. doi:10.1046/j.1528-1157.2002.23501.x

[31]   E. Urrestarazu, J. Iriarte, M. Alegre, M. Valencia, C. Viteri and J. Artieda, “Independent Component Analysis Removing Artifacts in Ictal Recordings,” Epilepsia, Vol. 45, No. 9, 2004, pp. 1071-1078. doi:10.1111/j.0013-9580.2004.12104.x