OJPC  Vol.2 No.3 , August 2012
Molecular Simulation of Ion Transport at the Water/Vapor Interface
Abstract: Molecular dynamics was used to quantify the role of the size, charge and polarisability of F–, Cl–, Br–, I– and Na+ ions in their distribution in the water/vapour interface system. Our results show that the larger polarizable anions I– and Br– is attracted to the surface which is traced back to surface-modified ion hydration, while the F– was repelled from the interface and the Cl– occupied the total volume of the water slab. Moreover, by artificially increasing the ions charge, anions were localized to the center of the water slab. These results demonstrate that the effect of polarizability cannot be neglected in the transport mechanism.
Cite this paper: J. Dweik, M. Srour, K. Karaky, M. Kobeissi, W. Joumaa and K. Abou-Saleh, "Molecular Simulation of Ion Transport at the Water/Vapor Interface," Open Journal of Physical Chemistry, Vol. 2 No. 3, 2012, pp. 147-155. doi: 10.4236/ojpc.2012.23020.

[1]   S. Mclaughin, “The Electrostatic Properties of Membranes,” Annual Review of Biophysics and Biophysical Chemistry, Vol. 18, 1989, pp. 113-136. doi:10.1146/

[2]   B. Honig, W. L. Hubell and R. F. Flewelling, “Electrostatic Interactions in Membranes and Proteins,” Annual Review of Biophysics and Biophysical Chemistry, Vol. 15, 1986, pp. 163-193. doi:10.1146/

[3]   J. H. Hu, Q. Shi, P. Davidovits, D. R. Worsnop, M. S. Zahniser and C. E. Kolb, “Reactive Uptake of Cl2(g) and Br2(g) by Aqueous Surfaces as a Function of Br? and I? Ion Concentration: The Effect of Chemical Reaction at the Interface,” Journal of Physical Chemistry, Vol. 99, No. 21, 1995, pp. 8768-8776. doi:10.1021/j100021a050

[4]   B. J. Finlayson and J. C. Hemminger, “Physical Chemistry of Airborne Sea Salt Particles and Their Components,” Journal of Physical Chemistry A, Vol. 104, No. 49, 2000, pp. 11463-11477. doi:10.1021/jp002968n

[5]   B. J. Finlayson-Pitts, “The Tropospheric Chemistry of Sea Salt:? A Molecular-Level View of the Chemistry of NaCl and NaBr,” Chemical Reviews, Vol. 103, No. 12, 2003, pp. 4801-4822. doi:10.1021/cr020653t

[6]   F. W. Tavares, D. Bratko, J. M. Prausnitz, “The Role of Salt-Macroion van der Waals Interactions in the Colloid- Colloid Potential of Mean Force,” Current Opinion in Colloid & Interface Science, Vol. 9, No. 1-2, 2004, pp. 81-86. doi:10.1016/j.cocis.2004.05.008

[7]   M. G. Cacace, E. M. Landau and J. J. Q. Ramsden, “The Hofmeister Series: Salt and Solvent Effects on Interfacial Phenomena,” Quarterly Reviews of Biophysics, Vol. 30, No. 3, 1997, pp. 241-277. doi:10.1017/S0033583597003363

[8]   R. J. Piazza. “Interactions in Protein Solutions near Crystallization: A Colloid Physics Approach,” Journal of Crystal Growth, Vol. 196, No. 2-4, 1999, pp. 415-423. doi:10.1016/S0022-0248(98)00867-7

[9]   P. Jungwirth and D. J. Tobias, “Molecular Structure of Salt Solutions: A New View of the Interface with Implications for Heterogeneous Atmospheric Chemistry,” Journal of Physical Chemistry B, Vol. 105, No. 43, 2001, pp. 10468-10472. doi:10.1021/jp012750g

[10]   P. Jungwirth and D. J. Tobias, “Chloride Anion on Aqueous Clusters, at the Air-Water Interface, and in Liquid Water:?Solvent Effects on Cl? Polarizability,” Journal of Physical Chemistry, Vol. 106, No. 2, 2002, pp. 379-383. doi:10.1021/jp012059d

[11]   P. Jungwirth and D. J. Tobias,”Surface Effects on Aqueous Ionic Solvation: A Molecular Dynamics Study of NaCl at the Air/Water Interface from Infinite Dilution to Saturation,” Journal of Physical Chemistry B, Vol. 104, No. 32, 2000, pp. 7702-7706. doi:10.1021/jp000941y

[12]   P. Jungwirth and D. J. Tobias, “Specific Ion Effects at the Air/Water Interface,” Chemical Reviews, Vol. 106, No. 4, 2006, pp. 1259-1281. doi:10.1021/cr0403741

[13]   V. Padmanabhan, J. Daillant, and L. Belloni, “Specific Ion Adsorption and Short-Range Interactions at the Air Aqueous Solution Interface,” Physical Review Letters, Vol. 99, No. 8, 2007, Article ID: 086105, pp. 1-4.

[14]   L. X. Dang and T. S. Chang,” Molecular Mechanism of Ion Binding to the Liquid/Vapor Interface of Water,” Journal of Physical Chemistry B, Vol. 106, No. 2, 2002, pp. 235-238. doi:10.1021/jp011853w

[15]   L. X. Dang and D. E. Smith, “Molecular Dynamics Simulations of Aqueous Ionic Clusters Using Polarizable Water,” Journal of Chemical Physics, Vol. 99, No. 9, 1993, pp. 6950-6956. doi:10.1063/1.465441

[16]   L. X. Dang, “Computer Simulation Studies of Ion Transport across a Liquid/Liquid Interface,” Journal of Chemical Physics B, Vol. 103, No. 39, 1999, pp. 8195-8200. doi:10.1021/jp991824+

[17]   D. Horinek and R. Netz, “Specific Ion Adsorption at Hydrophobic Solid Surfaces,” Physical Review Letters, Vol. 99, 2007, pp. 226104-22607. doi:10.1103/PhysRevLett.99.226104

[18]   L. Onsager and N. N. T. Samaras, “The Surface Tension of Debye-Hückel Electrolytes,” Journal of Chemical Physics, Vol. 2, No. 8, 1934, pp. 528-536. doi:10.1063/1.1749522

[19]   C. Wagner, “The Surface Tension of Dilute Solutions of Electrolytes,” Physikalische Zeitschrift, Vol. 25, 1924, pp. 474-477.

[20]   D. A. Case, T. A. Darden, T. E. Cheatham, et al., “AM BER9,” 2006.

[21]   H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola and J. R. Haak, “Molecular Dynamics with Coupling to an External Bath,” Journal of Chemical Physics, Vol. 81, 1984, pp. 3684-3690. doi:10.1063/1.448118

[22]   J.W. Caldwell and P. A. Kollman,”Structure and Properties of Neat Liquids Using Nonadditive Molecular Dynamics: Water, Methanol, and N-Methylacetamide,” Journal of Physical Chemistry, Vol. 99, No. 16, 1995, pp. 6208-6219. doi:10.1021/j100016a067

[23]   L. Perera and M. L. Berkowitz,”Structures of Cl?(H2O)n and F?(H2O)n (n=2,3,...,15) Clusters. Molecular dynamics computer simulations,” Journal of Chemical Physics, Vol. 100, 1994, pp. 3085-3093. doi:10.1063/1.466450

[24]   G. Markovich, L. Perera, M. Berkowitz and O. Cheshnovsky, “The solvation of Cl?, Br?, and I? in Acetonitrile Clusters: Photoelectron Spectroscopy and Molecular Dynamics Simulations,” Journal of Chemical Physics, Vol. 105, No. 7, 1996, pp. 2675-2685. doi:10.1063/1.472131

[25]   J. P. Ryckaert, G. Ciccotti and H. J. C. Berendsen, “Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes,” Journal of Computational Physics, Vol. 23, No. 3, 1977, pp. 327-341. doi:10.1016/0021-9991(77)90098-5

[26]   W. F. Van Gunsteren, and H. J. C. Berendsen, “Algorithms for Macromolecular Dynamics and Constraint Dynamics,” Molecular Physics, Vol. 34, No. 5, 1977, pp. 1311-1327. doi:10.1080/00268977700102571

[27]   U. Essmann, L. Perera, M. L. Berkowitz, T. Darden and L. G. Pedersen, “A Smooth Particle Mesh Ewald Method,” Journal of Chemical Physics, Vol. 103, No. 19, 1995, pp. 8577-8593. doi:10.1063/1.470117

[28]   D. Chandler, “Interfaces and the Driving Force of Hydro Phobic Assembly,” Review, Nature, Vol. 437, No. 29, 2005, pp. 640-647.

[29]   R. W. Gora, S. Rosak, Leszczynski,”Properties and Nature of Interactions in Cl?(H2O)n, n = 1,6 Clusters: A Theoretical Study,” Journal of Chemical Physics Letters, Vol. 325, No. 1-3, 2000, pp. 7-14. doi:10.1016/S0009-2614(00)00624-2

[30]   S. J. Stuart and B. J. Berne,“Surface Curvature Effects in the Aqueous Ionic Solvation of the Chloride Ion,” Journal of Physical Chemistry A, Vol. 103, No. 49, 1999, pp. 10300-10307. doi:10.1021/jp991671q

[31]   P. Ayotte, G. H. Weddle, J. Kim and M. A. Johnson,” Vibrational Spectroscopy of the Ionic Hydrogen-Bond: Fermi Resonance and Ion-Molecule Stretching Frequencies in the Binary X??H2O (X=Cl, Br, I) Complexes via Argon Predissociation Spectroscopy,” Journal of the American Chemical Society, Vol. 120, No. 47, 1998, pp. 12361-12362. doi:10.1021/ja981979f

[32]   A. P. dos Santos, A. Diehl and Y. Levin, “Surface Tensions, Surface Potentials and the Hofmeister Series of Electrolyte Solutions,” Langmuir, Vol. 26, No. 13, 2010, pp. 10778-10783. doi:10.1021/la100604k