JBBS  Vol.2 No.3 , August 2012
Interaction between Angiotensinergic System and GABAergic System on Thirst in Adult Male Rats
Thirst is a subjective perception that provides the urge for human and animals to drink fluids and it is important for maintaining body fluid homeostasis and may arise from deficits in either intracellular or extracellular fluid volume. Gamma-aminobutyric acid (GABA) and Angiotensin (Ang) receptors in the brain are involved with thirst, water intake and balance of body liquid. The present study investigated the interaction between Angiotensinergic and GABAergic systems on water intake in adult male rats. Intracerebroventricular (i.c.v.) injections were carried out in all experiments after 24 h deprivation of water intake. After deprivation the volume of consumed water was measured for 1 h. Administration of Losartan (45 μg/rat), Muscimol (0.1 μg/rat) significantly decreased water intake while, i.c.v. microinjection of Bicuculline (1 μg/rat) significantly increased it as compared to Saline-treated controls. I.C.V. microinjection of Muscimol 15 min after Losartan administration decreased water intake significantly, while, i.c.v. microinjection of Bicuculline 15min after Losartan administration could attenuate increasing effect of Bicuculline on water intake. It is concluded that Angiotensinergic system have interaction with GABAergic system on water intake.

Cite this paper
M. Shirazi-Nejad, N. Naghdi and S. Oryan, "Interaction between Angiotensinergic System and GABAergic System on Thirst in Adult Male Rats," Journal of Behavioral and Brain Science, Vol. 2 No. 3, 2012, pp. 299-307. doi: 10.4236/jbbs.2012.23034.
[1]   M. J. McKinley and A. K. Johnson, “The Physiological Regulation of Thirst and Fluid Intake,” News in Physiological Sciences, Vol. 19, No. 1, 2004, pp. 1-6. doi:10.1152/nips.01470.2003

[2]   T. Unger, F. Bles, D. Ganten, R. E. Lang, R. Rettig and N. A. Schwab, “GABAergic stimulation Inhibits Central Actions of Angiotensin II: Pressor Responses, Drinking and Release of Vasopressin,” European Journal of Pharmacology, Vol. 90, No. 1, 1983, pp. 1-9. doi:10.1016/0014-2999(83)90207-8

[3]   M. Abe, T. Tokunaga, K. Yamada and T. Furukawa, “Gamma-Aminobutyric Acid and Taurine Antagonize the Central Effects of Angiotensin II and Renin on the Intake of Water and Salt, and on Blood Pressure in Rats,” Neuropharmacology, Vol. 27, No. 3, 1988, pp. 309-318. doi:10.1016/0028-3908(88)90049-4

[4]   L. J. Waldecy and R. F. Celso, “Angiotensinergic Pathway through the Median Preoptic Nucleus in the Control of Oxytocin Secretion and Water and Sodium Intake,” Brain Research, Vol. 1014, No. 1-2, 2004, pp. 236-243. doi.: 10.1016/j.brainres.2004.03.077

[5]   Q. Chen and H. L. Pan, “Signaling Mechanisms of Angiotensin II—Induced Attenuation of GABAergic Input to Hypothalamic Presympathetic Neurons,” Journal of Neurophysiology, Vol. 97, No. 5, 2007, pp. 3279-3287. doi:10.1152/jn.01329.2006

[6]   D. A. Fitts and D. B. Masson, “Preoptic Angiotensin and Salt Appetite,” Behavioral Neuroscience, Vol. 104, No. 4, 1990, pp. 643-650. doi:10.1037/0735-7044.104.4.643

[7]   K. Honda, H. Aradachi, T. Higuchi, S. Takano and H. Negoro, “Activation of Paraventricular Neurosecretory Cells by Local Osmotic Stimulation of the Median Preoptic Nucleus,” Brain Research, Vol. 594, No. 2, 1992, pp. 335-338. doi:10.1016/0006-8993(92)91147-7

[8]   D. S. Martin and J. R. Haywood, “Hemodynamic Responses to Paraventricular Nucleus Disinhibition with Bicuculline in Conscious Rats,” American Journal of Physiology, Vol. 265, No. 5, 1993, pp. H1727-1733.

[9]   J. H. Coote, Z. Yang, S. Pyner and J. Deering, “Control of Sympathetic Outflows by the Hypothalamic Paraventricular Nucleus,” Clinical and Experimental, Vol. 25, No. 6, 1998, pp. 461-463. doi:10.1111/j.1440-1681.1998.tb02235.x

[10]   A. M. Allen, “Inhibition of the Hypothalamic Paraventricular Nucleus in Spontaneously Hypertensive Rats Dramatically Reduces Sympathetic Vasomotor Tone,” Hypertension, Vol. 39, No. 2, 2002, pp. 275-280. doi:10.1161/hy0202.104272

[11]   E. S. Halperin, J. Y. Summy-Long, L. C. Keil and W. B. Severs, “Aspects of Salt/Water Balance after Cerebroventricular Infusion of Angiotensin II,” Brain Research, Vol. 205, No.1, 1981, pp. 219-221. doi:10.1016/0006-8993(81)90736-8

[12]   T. Unger, O. Chung, T. Csikos, J. Culman, S. Gallinat, P. Gohlke, S. H?hle, S. Meffert, M. Stoll, U. Stroth and Y.-Z. Zhu, “Angiotensin Receptors,” The Journal of Hypertension, Vol. 14, No. 5, 1996, pp. S95-S103.

[13]   J. T. Fitzsimons, “Angiotensin, Thirst, and Sodium Appetite,” Physiological Reviews, Vol. 78, No. 3, 1998, pp. 583-686.

[14]   M. J. Mckinley, A. M. Allen, M. L. Mathal, C. May, R. M. Mcallen, B. J. Oldfield and R. S. Weisinger, “Brain Angiotensin and Body Fluid Homeostasis,” The Japanese Journal of Physiology, Vol. 51, No. 3, 2001, pp. 281-289. doi:10.2170/jjphysiol.51.281

[15]   K. J. Catt, M. C. Carson, W. P. Hausdorff, C. M. Leach-Harper, A. J. Baukal, G. Guillemette, T. Balla and G. Aguilera, “Angiotensin II Receptors and Mechanisms of Action in Adrenal Glomerulosa Cells,” Journal of Steroid Biochemistry, Vol. 27, No. 4-6, 1987, pp. 915-927. doi:10.1016/0022-4731(87)90168-3

[16]   D. Daniels, D. K. Yee and S. J. Fluharty, “Angiotensin II Receptor Signaling,” Experimental Physiology, Vol. 92, 2007, pp. 523-527. doi:10.1113/expphysiol.2006.036897

[17]   T. J. Murphy, R. W. Alexander, K. K. Griendling, M. S. Runge and K. E. Bernstein, “Isolation of a cDNA Encoding the Vascular Type-1 Angiotensin II Receptor,” Nature, Vol. 351, No. 6323, 1991, pp. 233-236. doi:10.1038/351233a0

[18]   Y. Kambayashi, S. Bardhan, K. Takahashi, S. Tsuzuki, H. Inui, T. Hamakubo and T. Inagami, “Molecular Cloning of a Novel Angiotensin II Receptor Isoform Involved in Phosphotyrosine Phosphatase Inhibition,” The Journal of Biological Chemistry, Vol. 268, No. 33, 1993, pp. 24543-24546.

[19]   R. E. Lang, T. Unger, W. Rascher and D. Ganten, “Brain Angiotensin,” In: L. L. Iversen, Ed., Handbook of Psychopharmacology, Plenum Publishing Corp, New York, 1982, p. 307.

[20]   J. T. Fitzsimons, “Angiotensin Stimulation of the Central Nervous System,” Reviews of Physiology, Biochemistry and Pharmacology, Vol. 87, 1980, pp. 117-167. doi:10.1007/BFb0030897

[21]   E. C. Crews and N. E. Rowland, “Role of Angiotensin in Body Fluid Homeostasis of Mice: Effect of Losartan on Water and NaCl Intakes,” American Journal of Physiology, Vol. 288, No. 3, 2005, pp. R638-R644.

[22]   K. Sakai, K. Agassandian, S. Morimoto, P. Sinnayah, M. D. Cassell, R. L. Davisson and C. D. Sigmund, “Local Production of Angiotensin II in the Subfornical Organ Causes Elevated Drinking,” The Journal of Clinical Investigation, Vol. 117, No. 4, 2007, pp. 1088-1095. doi:10.1172/JCI31242

[23]   P. C. Wong, W. A. Price, A. T. Chiu, J. V. Duncia, D. J. Carin, R. R. Wexler, A. L. Johnson and P. B. M. W. M. Timmermans, “Nonpeptide Angiotensin II Receptor Antagonists. VIII. Characterization of Functional Antagonism Displayed by DuP 753, An Orally Active Antihypertensive Agent,” The Journal of Pharmacology and Experimental Therapeutics, Vol. 252, No. 2, 1990, pp. 719-725.

[24]   T. P. O’Neill and M. J. Brody, “Role for the Median Preoptic Nucleus in Centrally Evoked Pressor Responses,” The American Journal of Physiology, Vol. 252, No. 6, 1987, pp. R1165-R1172.

[25]   M. Kadekaro, J. Y. Summy Long, S. Freeman, J. S. Harris and M. L. Terrell, “Cerebral Metabolic Responses and Vasopressin and Oxytocin Secretion during Progressive Water Deprivation in Rat,” American Journal of Physiology, Vol. 262, No. 2, 1992, pp. 310-317.

[26]   M. P. Meeley, M. D. Underwood, W. T. Talman and D. J. Reis, “Content and in Vitro Release of Endogenous Amino Acids in the Area of the Solitary Tract of the Rat,” The Journal of Neurochemistry, Vol. 53, No. 6, 1989, pp. 1807-1817. doi:10.1111/j.1471-4159.1989.tb09247.x

[27]   T. Araki, H. Kiyama and M. Tohyama, “The GABAA Receptor Gamma 1 Subunit Is Expressed by Distinct Neuronal Populations,” Molecular Brain Research, Vol. 15, No. 2, 1992, pp. 121-132. doi:10.1016/0169-328X(92)90159-9

[28]   J. C. Callera, L. B. Oliveira, S. P. Barbosa, D. S. A. Colombari, L. A. Deluca and J. V. Menani, “GABAA Receptor Activation in the Lateral Parabrachial Nucleus Induces Water and Hypertonic NaCl Intake,” Neuroscience, Vol. 134, No. 3, 2005, pp. 725-735. doi:10.1016/j.neuroscience.2005.05.009

[29]   N. G. Bowery, A. L. Hudson and G. W. Price, “GABAA and GABAB Receptor Binding Site Distribution in the Rat Central Nervous System,” Neuroscience, Vol. 20, No. 2, 1987, pp. 365-383. doi:10.1016/0306-4522(87)90098-4

[30]   N. G. Bowery, “GABAB Receptors and Their Significance in Mammalian Pharmacology,” Trends in Pharmacological Sciences, Vol. 10, No. 10, 1989, pp. 401-407. doi:10.1016/0165-6147(89)90188-0

[31]   D. C. M. Chu, R. L. Albin, A. B. Young and J. B. Penny, “Distribution and Kinetics of GABAB Receptor Binding Sites in the Central Nervous System: A Quantitative Autoradiographic Study,” Neuroscience, Vol. 34, No. 2, 1990, pp. 341-357. doi:10.1016/0306-4522(90)90144-S

[32]   A. J. Houston, J. C. Wong and I. S. Ebenezer, “Effect of Subcutaneous Administration of the Gamma-Aminobutyric Acid: A Receptor Agonist Muscimol on Water In-take in Water-Deprived Rats,” Physiology and Behavior, Vol. 77, No. 2, 2002, pp. 445-450.

[33]   D. L. Jones and G. J Mogenson, “Central Injections of Spiperone and GABA: Attenuation of Angiotensin II Stimulated Thirst,” Canadian Journal of Physiology and Pharmacology, Vol. 60, No. 5, 1982, pp. 720-726. doi:10.1139/y82-098

[34]   J. Tanaka, S. Fujisawa and M. Nomura, “GABAergic Modulation of the Ang II-Induced Drinking Response in the Rat Medial Preoptic Nucleus,” Pharmacology, Biochemistry and Behavior, Vol. 76, No. 1, 2003, pp. 43-51. doi:10.1016/S0091-3057(03)00195-3

[35]   E. Mugnaini and W. H. Oertel, “An Atlas of the Distribution of GABAergic Neurons and Terminals in the Rat CNS as Revealed by GAD Immunocytochemistry,” Hand-book of Chemical Neuroanatomy 4, Elsevier, New York, 1985, pp. 436-608.

[36]   W. Feldberg and M. S. E. Rocha, “Inhibition of Vasopressin Release to Carotid Occlusion by Gamma-Aminobutyric Acid and Glycine,” British Journal of Pharmacology, Vol. 72, No. 1, 1981, pp. 17-24.

[37]   F. A. Mendelsohn, R. Quirion, J. M. Saavedra, G. Aguilera and K. J. Catt, “Autoradiographic Localization of Angiotensin II Receptors in Rat Brain,” Proceedings of the National Academy of Sciences of the USA, Vol. 81, No. 5, 1984, pp. 1575-1579. doi:10.1073/pnas.81.5.1575

[38]   K. Song, A. M. Allen, G. Paxinos and F. A. Mendelsohn, “Mapping of Angiotensin II Receptor Subtype Heterogeneity in Rat Brain,” The Journal of Comparative Neurology, Vol. 316, No. 4, 1992, pp. 467-484. doi:10.1002/cne.903160407

[39]   M. E. Giles, R. T. Fernley, Y. Nakamura, I. Moeller, G. P. Aldred, T. Ferraro, J. D. Penschow, M. J. McKinley and B. J. Oldfield, “Characterization of a Specific Antibody to the Rat Angiotensin II AT1 Receptor,” The Journal of Histochemistry and Cytochemistry, Vol. 47, No. 4, 1999, pp. 507-516. doi:10.1177/002215549904700409

[40]   L. B. de Oliveira, J. C. Callera, L. A. de Luca Jr, D. S. A. Colombari and J. V. Menani, “GABAergic Mechanisms of the Lateral Parabrachial Nucleus on Sodium Appetite,” Brain Research Bulletin, Vol. 73, No. 2, 2007, pp. 238-247. doi:10.1016/j.brainresbull.2007.03.006

[41]   R. DiNicolantonio, “Angiotensin Converting Enzyme Blockade and Thirst,” Clinical and Experimental Hypertension, Part A, Vol. 6, No. 10-11, 1984, pp. 2025-2029. doi:10.3109/10641968409046121

[42]   A. Goto, T. Ikeda, L. Tobian, J. Iwai, M. A. Johnson, “Brain Lesions in the Paraventricular Nuclei and Catecholaminergic Neurons Minimize Salt Hypertension in Dahl Salt-Sensitive Rats,” Clinical Science, Vol. 61, No. 7, 1981, pp. 53S-55S.

[43]   T. C. Herzig, R. A. Buchholz and J. R. Haywood, “Effects of Paraventricular Nucleus Lesions on Chronic Renal Hypertension,” American Journal of Physiology, Vol. 261, No. 3, 1991, pp. H860-H867.

[44]   J. R. Haywood, S. W. Mifflin, T. Craig, A. Calderon, J. G. Hensler and C. Hinojosa-Laborde, “Gamma-Aminobutyric Acid (GABA)—A Function and Binding in the Paraventricular Nucleus of the Hypothalamus in Chronic Renal-Wrap Hypertension,” Hypertension, Vol. 37, No. 2, 2001, pp. 614-618.

[45]   R. N. Ranson, K. Motawei, S. Pyner and J. H. Coote, “The Paraventricular Nucleus of the Hypothalamus Sends Efferents to the Spinal Cord of the Rat That Closely Appose Sympathetic Preganglionic Neurons Projecting to the Stellate Ganglion,” Experimental Brain Research, Vol. 120, No. 2, 1998, pp. 164-172. doi:10.1007/s002210050390

[46]   T. Akaishi, H. Negoro and S. Kobayasi, “Responses of Paraventricular and Supraoptic Units to Angiotensin II, Sar-Ile8-angiotensin II and hypertonic NaCl administered into the Cerebral Ventricle,” Brain Research, Vol. 188, No. 2, 1980, pp. 499-511. doi:10.1016/0006-8993(80)90048-7

[47]   M. Thibonnier, C. Auzan, Z. Madhun, P. Wilkins, L. Berti-Mattera and E. Clauser, “Molecular Cloning, Sequencing, and Functional Expression of a cDNA Encoding the Human V1a Vasopressin Receptor,” The Journal of Biological Chemistry, Vol. 269, No. 5, 1994, pp. 3304-3310.

[48]   M. Birnbaumer, “Vasopressin Receptors,” Trends in Endocrinology and Metabolism, Vol. 11, No. 10, 2000, pp. 406-410. doi:10.1016/S1043-2760(00)00304-0

[49]   J. Guan, C. Mao, X. Feng, H. Zhang, F. Xu, C. Geng, L. Zhu, A. Wang and Z. Xu, “Fetal Development of Regulatory Mechanisms for Body Fluid Homeostasis,” Brazilian Journal of Medical and Biological Research, Vol. 41, No. 6, 2008, pp. 446-454. doi:10.1590/S0100-879X2008005000025

[50]   J. C. Geerling and A. D. Loewy, “Central Regulation of Sodium Appetite,” Experimental Physiology, Vol. 93, No. 2, 2008, pp. 177-209. doi:10.1113/expphysiol.2007.039891

[51]   M. Birnbaumer, “Vasopressin Receptor Mutations and Nephrogenic Diabetes Insipidus,” Archives of Medical Research, Vol. 30, No. 6, 1999, pp. 465-474. doi:10.1016/S0188-4409(99)00063-6

[52]   J. Herbert, M. L. Forsling, S. R. Howes, P. M. Stacey and H. M. Shiers, “Regional Expression of c-fos Antigen in the Basal Forebrain Following Intraventricular Infusions of Angiotensin and Its Modulation by Drinking Either Water or Saline,” Neuroscience, Vol. 51, No. 4, 1992, pp. 867-882. doi:10.1016/0306-4522(92)90526-8

[53]   E. Roberts, “Living Systems Are Tonically Inhibited, Autonomous Optimizers, and Disinhibition Coupled to Variability Generation Is Their Major Organizing Principle: Inhibitory Command-Control at Levels of Membrane, Genome, Metabolism, Brain, and Society,” Neurochemical Research, Vol. 16, No. 3, 1991, pp. 409-421. doi:10.1007/BF00966104

[54]   R. Nissen and L. P. Renaud, “GABA Receptor Mediation of Median Preoptic Nucleus-Evoked Inhibition of Supraoptic Neurosecretory Neurons in Rat,” The Journal of Physiology, Vol. 479, 1994, pp. 207-216.

[55]   M. J. Antonaccio and D. W. Snyder, “Reductions in Blood Pressure, Heart Rate and Renal Sympathetic Nervous Discharge after Imidazole-4-acetic Acid: Mediation through Central γ-aminobutyric Acid (GABA) Receptor Stimulation,” The Journal of Pharmacology and Experimental Therapeutics, Vol. 218, No. 1, 1981, pp. 200-205.

[56]   G. K. Matheson, E. Freed and G. Tunnicliff, “Novel GABA Analogues as Hypotensive Agents,” Neuropharmacology, Vol. 25, No. 11, 1986, pp. 1191-1195. doi:10.1016/0028-3908(86)90135-8

[57]   D. S. Martin and J. R. Haywood, “Reduced GABA Inhibition of Sympathetic Function in Renal-Wrapped Hypertensive Rats,” The American Journal of Physiology, Vol. 275, No. 5, 1998, pp. R1523-R1529.

[58]   T. Unger, H. Becker, R. Dietz, D. Ganten, R. E. Lang, R. Rettig, A. Schomig and N. A. Schwab, “Antihypertensive Effect of the GABA Receptor Agonist Muscimol in Spontaneously Hypertensive Rats,” Circulation Research, Vol. 54, No. 1, 1984, pp. 30-37.

[59]   S. Nagahama, R. Dawson and S. Oparil, “Enhanced Depressor Effect of Muscimol in the DOCA/NaCl Hypertensive Rat: Evidence for Altered GABAergic Activity in Brain,” Proceedings of the Society for Experimental Biology and Medicine, Vol. 180, No. 2, 1985, pp. 277-283.

[60]   D. S. Martin, T. Segura and J. R. Haywood, “Cardiovascular Responses to Bicuculline in the Paraventricular Nucleus of the Rat,” Hypertension, Vol. 18, No. 1, 1991, pp. 48-55.

[61]   J. R. Haselton, J. Goering and K. P. Patel, “Parvocellular neurons of the Paraventricular Nucleus Are Involved in the Reduction in Renal Nerve Discharge during Isotonic Volume Expansion,” The Journal of the Autonomic Nervous System, Vol. 50, No. 1, 1994, pp. 1-11. doi:10.1016/0165-1838(94)90117-1

[62]   K. Zhang and K. P. Patel, “Effect of Nitric Oxide within the Paraventricular Nucleus on Renal Sympathetic Nerve Discharge: Role of GABA,” The American Journal of Physiology, Vol. 275, No. 3, 1998, R728-R734.

[63]   W. B. Severs and A. E. Daniels-Severs, “Effects of Angiotensin on the Central Nervous System,” Pharmacological Reviews, Vol. 25, No. 3, 1973, pp. 415-449.

[64]   T. Unger, W. Rascher, C. Schuster, R. Pavlovitch, A. Schomig, R. Dietz and D. Ganten, “Central Blood Pressure Effects of Substance P and Angiotensin II: Role of the Sympathetic Nervous System and Vasopressin,” European Journal of Pharmacology, Vol. 71, No. 1, 1981, pp. 33-42. doi:10.1016/0014-2999(81)90384-8

[65]   D. P. Li and H. L. Pan, “Role γ-Aminobutyric Acid (GABA)A and GABAB Receptors in Paraventricular Nucleus in Control of Sympathetic Vasomotor Tone in Hypertension,” The Journal of Pharmacology and Experimental Therapeutics, Vol. 320, No. 2, 2007, pp. 615-626. doi:10.1124/jpet.106.109538

[66]   D. P. Li, S. R. Chen and H. L. Pan, “Angiotensin II Stimulates Spinally Projecting Paraventricular Neurons through Presynaptic Disinhibition,” The Journal of Neuroscience, Vol. 23, No. 12, 2003, pp. 5041-5049.

[67]   D. P. Li and H. L. Pan, “Angiotensin II Attenuates Synaptic GABA Release and Excites Paraventricular-Rostral Ventrolateral Medulla Output Neurons,” The Journal of Pharmacology and Experimental Therapeutics, Vol. 313, No. 3, 2005, pp. 1035-1045. doi:10.1124/jpet.104.082495

[68]   B. Erdos, C. S. Broxson, M. A. King, P. J. Scarpace and N. Tumer, “Acute Pressor Effect of Central Angiotensin II Is Mediated by NAD(P)H-Oxidase-Dependent Production of Superoxide in the Hypothalamic Cardiovascular Regulatory Nuclei,” The Journal of Hypertension, Vol. 24, No. 1, 2006, pp. 109-116. doi:10.1097/01.hjh.0000198026.99600.59

[69]   A. R. Giniatullin, F. Darios, A. Shakirzyanova, B. Davletov and R. Giniatullin, “SNAP25 Is a Pre-Synaptic Target for the Depressant Action of Reactive Oxygen Species on Transmitter Release,” The Journal of Neurochemistry, Vol. 98, No. 6, 2006, pp. 1789-1797. doi:10.1111/j.1471-4159.2006.03997.x

[70]   M. V. Avshalumov, B. T. Chen and M. E. Rice, “Mechanisms Underlying H(2)O(2)-Mediated Inhibition of Synaptic Transmission in Rat Hippocampal Slices,” Brain Research, Vol. 882, No. 1, 2000, pp. 86-94. doi:10.1016/S0006-8993(00)02835-3

[71]   Y. Groemping, K. Lapouge, S. J. Smerdon and K. Rittinger, “Molecular Basis of Phosphorylation-Induced Activation of the NADPH Oxidase,” Cell, Vol. 113, No. 3, 2003, pp. 343-355. doi:10.1016/S0092-8674(03)00314-3